1,834 research outputs found

    Exponential torsion growth for random 3-manifolds

    No full text
    We show that a random 3-manifold with positive first Betti number admits a tower of cyclic covers with exponential torsion growth

    Random walks and random fixed-point free involutions

    Full text link
    A bijection is given between fixed point free involutions of {1,2,...,2N}\{1,2,...,2N\} with maximum decreasing subsequence size 2p2p and two classes of vicious (non-intersecting) random walker configurations confined to the half line lattice points l1l \ge 1. In one class of walker configurations the maximum displacement of the right most walker is pp. Because the scaled distribution of the maximum decreasing subsequence size is known to be in the soft edge GOE (random real symmetric matrices) universality class, the same holds true for the scaled distribution of the maximum displacement of the right most walker.Comment: 10 page

    Dynamics of a tagged particle in the asymmetric exclusion process with the step initial condition

    Full text link
    The one-dimensional totally asymmetric simple exclusion process (TASEP) is considered. We study the time evolution property of a tagged particle in TASEP with the step-type initial condition. Calculated is the multi-time joint distribution function of its position. Using the relation of the dynamics of TASEP to the Schur process, we show that the function is represented as the Fredholm determinant. We also study the scaling limit. The universality of the largest eigenvalue in the random matrix theory is realized in the limit. When the hopping rates of all particles are the same, it is found that the joint distribution function converges to that of the Airy process after the time at which the particle begins to move. On the other hand, when there are several particles with small hopping rate in front of a tagged particle, the limiting process changes at a certain time from the Airy process to the process of the largest eigenvalue in the Hermitian multi-matrix model with external sources.Comment: 48 pages, 8 figure

    Nonvolatile memory with molecule-engineered tunneling barriers

    Full text link
    We report a novel field-sensitive tunneling barrier by embedding C60 in SiO2 for nonvolatile memory applications. C60 is a better choice than ultra-small nanocrystals due to its monodispersion. Moreover, C60 provides accessible energy levels to prompt resonant tunneling through SiO2 at high fields. However, this process is quenched at low fields due to HOMO-LUMO gap and large charging energy of C60. Furthermore, we demonstrate an improvement of more than an order of magnitude in retention to program/erase time ratio for a metal nanocrystal memory. This shows promise of engineering tunnel dielectrics by integrating molecules in the future hybrid molecular-silicon electronics.Comment: to appear in Applied Physics Letter

    Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs. polar InGaN/GaN based quantum heterostructures

    Get PDF
    Cataloged from PDF version of article.We report on the electric field dependent carrier dynamics and optical absorption in nonpolar a-plane GaN-based quantum heterostructures grown on r-plane sapphire, which are surprisingly observed to be opposite to those polar ones of the same materials system and similar structure grown on c-plane. Confirmed by their time-resolved photoluminescence measurements and numerical analyses, we show that carrier lifetimes increase with increasing external electric field in nonpolar InGaN/GaN heterostructure epitaxy, whereas exactly the opposite occurs for the polar epitaxy. Moreover, we observe blue-shifting absorption spectra with increasing external electric field as a result of reversed quantum confined Stark effect in these polar structures, while we observe red-shifting absorption spectra with increasing external electric field because of standard quantum confined Stark effect in the nonpolar structures. We explain these opposite behaviors of external electric field dependence with the changing overlap of electron and hole wavefunctions in the context of Fermi's golden rule. (C) 2011 Optical Society of Americ

    Anti-inflammatory effect of low intensity ultrasound (LIUS) on complete Freund's adjuvant-induced arthritis synovium

    Get PDF
    SummaryObjectivesArthritis with intra-articular inflammation was accompanied by joint pain, swelling, and stiffness leading to significant functional impairment. Thus, regulation of joint inflammation is a good therapeutic approach for patients with arthritis. In this study, the effect of low intensity ultrasound (LIUS) applied to an adjuvant-induced arthritic rat model on the synovium was investigated.DesignSynovial inflammation was induced by complete Freund's adjuvant (CFA)-injection into the rat knee joint. LIUS (200 mW/cm2) was applied on the ipsilateral knee everyday for 10 min beginning 1 day after inflammation induction. The expression of proinflammatory factors and immunohistochemical staining pattern of the synovium were assessed.ResultsCFA induced an increase of the knee circumference that was significantly diminished by LIUS. Synovial membrane hyperplasia in the ipsilateral joint was also affected by LIUS. The inflammatory mediators, COX-1/2, IL-1β, and iNOS, but not TNF-α, in the synovial membrane were induced after 3 days, and they closely correlated with the degree of edema. In the synovial membrane, the expression of inflammatory mediators was reduced by LIUS. The chemoattractant chemokine receptor CCR5 also was involved. On immunohistochemical analysis, CFA caused increased infiltration of CD11b-positive cells in the synovium. After 3 days, neutrophils, myeloperoxidase (MPO)-positive cells filled the inflammatory core; later, monocytes and macrophages, ionized calcium binding adaptor molecule 1 (Iba1)-positive cells in the periphery infiltrated the core by day 5. LIUS markedly reduced CFA-induced inflammatory cells infiltration.ConclusionLIUS showed a potent anti-inflammatory effect in this animal arthritis model with reduced infiltration of inflammatory cells into the synovium
    corecore