3,167 research outputs found

    Redefining relative biological effectiveness in the context of the EQDX formalism: implications for alpha-particle emitter therapy.

    Get PDF
    Alpha-particle radiopharmaceutical therapy (αRPT) is currently enjoying increasing attention as a viable alternative to chemotherapy for targeting of disseminated micrometastatic disease. In theory, αRPT can be personalized through pre-therapeutic imaging and dosimetry. However, in practice, given the particularities of α-particle emissions, a dosimetric methodology that accurately predicts the thresholds for organ toxicity has not been reported. This is in part due to the fact that the biological effects caused by α-particle radiation differ markedly from the effects caused by traditional external beam (photon or electron) radiation or β-particle emitting radiopharmaceuticals. The concept of relative biological effectiveness (RBE) is used to quantify the ratio of absorbed doses required to achieve a given biological response with alpha particles versus a reference radiation (typically a beta emitter or external beam radiation). However, as conventionally defined, the RBE varies as a function of absorbed dose and therefore a single RBE value is limited in its utility because it cannot be used to predict response over a wide range of absorbed doses. Therefore, efforts are underway to standardize bioeffect modeling for different fractionation schemes and dose rates for both nuclear medicine and external beam radiotherapy. Given the preponderant use of external beams of radiation compared to nuclear medicine in cancer therapy, the more clinically relevant quantity, the 2 Gy equieffective dose, EQD2(α/β), has recently been proposed by the ICRU. In concert with EQD2(α/β), we introduce a new, redefined RBE quantity, named RBE2(α/β), as the ratio of the two linear coefficients that characterize the α particle absorbed dose-response curve and the low-LET megavoltage photon 2 Gy fraction equieffective dose-response curve. The theoretical framework for the proposed new formalism is presented along with its application to experimental data obtained from irradiation of a breast cancer cell line. Radiobiological parameters are obtained using the linear quadratic model to fit cell survival data for MDA-MB-231 human breast cancer cells that were irradiated with either α particles or a single fraction of low-LET (137)Cs γ rays. From these, the linear coefficient for both the biologically effective dose (BED) and the EQD2(α/β) response lines were derived for fractionated irradiation. The standard RBE calculation, using the traditional single fraction reference radiation, gave RBE values that ranged from 2.4 for a surviving fraction of 0.82-6.0 for a surviving fraction of 0.02, while the dose-independent RBE2(4.6) value was 4.5 for all surviving fraction values. Furthermore, bioeffect modeling with RBE2(α/β) and EQD2(α/β) demonstrated the capacity to predict the surviving fraction of cells irradiated with acute and fractionated low-LET radiation, α particles and chronic exponentially decreasing dose rates of low-LET radiation. RBE2(α/β) is independent of absorbed dose for α-particle emitters and it provides a more logical framework for data reporting and conversion to equieffective dose than the conventional dose-dependent definition of RBE. Moreover, it provides a much needed foundation for the ongoing development of an α-particle dosimetry paradigm and will facilitate the use of tolerance dose data available from external beam radiation therapy, thereby helping to develop αRPT as a single modality as well as for combination therapies

    Energy Renovations: Volume 17: Insulation - A Guide for Contractors to Share with Homeowners

    Full text link
    This report was prepared by PNNL for DOE's Building America program and is intended as a guide that energy performance contractors can share with homeowners to describe various insulation options for improving the energy performance and comfort of existing homes. The report provides descriptions of many common insulation types, including their advantages and disadvantages, R-values, characteristics, and typical uses. The report also describes potentially hazardous products such as asbestos and formaldehyde and safety issues when conducting energy-efficient upgrades including radon. The guide is available for download at the DOE Building America website, www.buildingamerica.gov

    Calibration of the Politrack® system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements

    Get PDF
    Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m−3, representing the Swiss concentration average of 70 Bq m−3 over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m−3. For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a 241Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 1192

    Sub MeV Particles Detection and Identification in the MUNU detector ((1)ISN, IN2P3/CNRS-UJF, Grenoble, France, (2)Institut de Physique, Neuch\^atel, Switzerland, (3) INFN, Padova Italy, (4) Physik-Institut, Z\"{u}rich, Switzerland)

    Full text link
    We report on the performance of a 1 m3^{3} TPC filled with CF4_{4} at 3 bar, immersed in liquid scintillator and viewed by photomultipliers. Particle detection, event identification and localization achieved by measuring both the current signal and the scintillation light are presented. Particular features of α\alpha particle detection are also discussed. Finally, the 54{54}Mn photopeak, reconstructed from the Compton scattering and recoil angle is shown.Comment: Latex, 19 pages, 20 figure

    Environmental changes and violent conflict

    Get PDF
    This letter reviews the scientific literature on whether and how environmental changes affect the risk of violent conflict. The available evidence from qualitative case studies indicates that environmental stress can contribute to violent conflict in some specific cases. Results from quantitative large-N studies, however, strongly suggest that we should be careful in drawing general conclusions. Those large-N studies that we regard as the most sophisticated ones obtain results that are not robust to alternative model specifications and, thus, have been debated. This suggests that environmental changes may, under specific circumstances, increase the risk of violent conflict, but not necessarily in a systematic way and unconditionally. Hence there is, to date, no scientific consensus on the impact of environmental changes on violent conflict. This letter also highlights the most important challenges for further research on the subject. One of the key issues is that the effects of environmental changes on violent conflict are likely to be contingent on a set of economic and political conditions that determine adaptation capacity. In the authors' view, the most important indirect effects are likely to lead from environmental changes via economic performance and migration to violent conflict. © 2012 IOP Publishing Ltd

    The First 1 1/2 Years of TOTEM Roman Pot Operation at LHC

    Get PDF
    Since the LHC running season 2010, the TOTEM Roman Pots (RPs) are fully operational and serve for collecting elastic and diffractive proton-proton scattering data. Like for other moveable devices approaching the high intensity LHC beams, a reliable and precise control of the RP position is critical to machine protection. After a review of the RP movement control and position interlock system, the crucial task of alignment will be discussed.Comment: 3 pages, 6 figures; 2nd International Particle Accelerator Conference (IPAC 2011), San Sebastian, Spain; contribution MOPO01

    Study of the impact of tissue density heterogeneities on 3-dimensional abdominal dosimetry: comparison between dose kernel convolution and direct monte carlo methods.

    Get PDF
    Dose kernel convolution (DK) methods have been proposed to speed up absorbed dose calculations in molecular radionuclide therapy. Our aim was to evaluate the impact of tissue density heterogeneities (TDH) on dosimetry when using a DK method and to propose a simple density-correction method. METHODS: This study has been conducted on 3 clinical cases: case 1, non-Hodgkin lymphoma treated with (131)I-tositumomab; case 2, a neuroendocrine tumor treatment simulated with (177)Lu-peptides; and case 3, hepatocellular carcinoma treated with (90)Y-microspheres. Absorbed dose calculations were performed using a direct Monte Carlo approach accounting for TDH (3D-RD), and a DK approach (VoxelDose, or VD). For each individual voxel, the VD absorbed dose, D(VD), calculated assuming uniform density, was corrected for density, giving D(VDd). The average 3D-RD absorbed dose values, D(3DRD), were compared with D(VD) and D(VDd), using the relative difference Δ(VD/3DRD). At the voxel level, density-binned Δ(VD/3DRD) and Δ(VDd/3DRD) were plotted against ρ and fitted with a linear regression. RESULTS: The D(VD) calculations showed a good agreement with D(3DRD). Δ(VD/3DRD) was less than 3.5%, except for the tumor of case 1 (5.9%) and the renal cortex of case 2 (5.6%). At the voxel level, the Δ(VD/3DRD) range was 0%-14% for cases 1 and 2, and -3% to 7% for case 3. All 3 cases showed a linear relationship between voxel bin-averaged Δ(VD/3DRD) and density, ρ: case 1 (Δ = -0.56ρ + 0.62, R(2) = 0.93), case 2 (Δ = -0.91ρ + 0.96, R(2) = 0.99), and case 3 (Δ = -0.69ρ + 0.72, R(2) = 0.91). The density correction improved the agreement of the DK method with the Monte Carlo approach (Δ(VDd/3DRD) < 1.1%), but with a lesser extent for the tumor of case 1 (3.1%). At the voxel level, the Δ(VDd/3DRD) range decreased for the 3 clinical cases (case 1, -1% to 4%; case 2, -0.5% to 1.5%, and -1.5% to 2%). No more linear regression existed for cases 2 and 3, contrary to case 1 (Δ = 0.41ρ - 0.38, R(2) = 0.88) although the slope in case 1 was less pronounced. CONCLUSION: This study shows a small influence of TDH in the abdominal region for 3 representative clinical cases. A simple density-correction method was proposed and improved the comparison in the absorbed dose calculations when using our voxel S value implementation

    Integration of external and internal dosimetry in Switzerland

    Get PDF
    Individual monitoring regulations in Switzerland are based on the ICRP60 recommendations. The annual limit of 20 mSv for the effective dose applies to the sum of external and internal radiation. External radiation is monitored monthly or quarterly with TLD, DIS or CR-39 dosemeters by 10 approved external dosimetry services and reported as Hp(10) and Hp(0.07). Internal monitoring is done in two steps. At the workplace, simple screening measurements are done frequently in order to recognise a possible incorporation. If a nuclide dependent activity threshold is exceeded then one of the seven approved dosimetry services for internal radiation does an incorporation measurement to assess the committed effective dose E50. The dosimetry services report all the measured or assessed dose values to the employer and to the National Dose Registry. The employer records the annually accumulated dose values into the individual dose certificate of the occupationally exposed person, both the external dose Hp(10) and the internal dose E50 as well as the total effective dose E = Hp(10)+E50. Based on the national dose registry an annual report on the dosimetry in Switzerland is published which contains the statistics for the total effective dose, as well as separate statistics for external and internal exposur

    Source Dimensions in Ultrarelativistic Heavy Ion Collisions

    Get PDF
    Recent experiments on pion correlations, interpreted as interferometric measurements of the collision zone, are compared with models that distinguish a prehadronic phase and a hadronic phase. The models include prehadronic longitudinal expansion, conversion to hadrons in local kinetic equilibrium, and rescattering of the produced hadrons. We find that the longitudinal and outward radii are surprisingly sensitive to the algorithm used for two-body collisions. The longitudinal radius measured in collisions of 200 GeV/u sulfur nuclei on a heavy target requires the existence of a prehadronic phase which converts to the hadronic phase at densities around 0.8-1.0 GeV/fm3^3. The transverse radii cannot be reproduced without introducing more complex dynamics into the transverse expansion.Comment: RevTeX 3.0, 28 pages, 6 figures, not included, revised version, major change is an additional discussion of the classical two-body collision algorithm, a (compressed) postscript file of the complete paper including figures can be obtained from Authors or via anonymous ftp at ftp://ftp_int.phys.washington.edu/pub/herrmann/pisource.ps.

    Inclusive Particle Spectra at RHIC

    Get PDF
    A simulation is performed of the recently reported data from PHOBOS at energies of 56 and 130 A GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at E=17.2 A GeV. The results compare well with these early measurements at RHIC.Comment: 4 pages, 2 figure
    corecore