9 research outputs found
Diversifying Selection Underlies the Origin of Allozyme Polymorphism at the Phosphoglucose Isomerase Locus in Tigriopus californicus
The marine copepod Tigriopus californicus lives in intertidal rock pools along the Pacific coast, where it exhibits strong, temporally stable population genetic structure. Previous allozyme surveys have found high frequency private alleles among neighboring subpopulations, indicating that there is limited genetic exchange between populations. Here we evaluate the factors responsible for the diversification and maintenance of alleles at the phosphoglucose isomerase (Pgi) locus by evaluating patterns of nucleotide variation underlying previously identified allozyme polymorphism. Copepods were sampled from eleven sites throughout California and Baja California, revealing deep genetic structure among populations as well as genetic variability within populations. Evidence of recombination is limited to the sample from Pescadero and there is no support for linkage disequilibrium across the Pgi locus. Neutrality tests and codon-based models of substitution suggest the action of natural selection due to elevated non-synonymous substitutions at a small number of sites in Pgi. Two sites are identified as the charge-changing residues underlying allozyme polymorphisms in T. californicus. A reanalysis of allozyme variation at several focal populations, spanning a period of 26 years and over 200 generations, shows that Pgi alleles are maintained without notable frequency changes. Our data suggest that diversifying selection accounted for the origin of Pgi allozymes, while McDonald-Kreitman tests and the temporal stability of private allozyme alleles suggests that balancing selection may be involved in the maintenance of amino acid polymorphisms within populations
Exposure to fluctuating salinity enhances free amino acid accumulation in Tigriopus californicus (Copepoda)
Intracellular concentrations of free amino acids (FAA) in the intertidal copepod Tigriopus californicus increase in response to hyperosmotic stress and decrease in response to hypo-osmotic stress. The purpose of this study was to determine if exposure to repeated bouts of osmotic stress resulted in changes in FAA accumulation or the degree of FAA retention in subsequent episodes. Five groups of T. californicus were exposed for 22 days to a fluctuating salinity regime which consisted of 24 h at 100% seawater followed by 24 h at either 90, 80, 70, 60 or 50% seawater (11 cycles). After the tenth exposure to 100% seawater, individuals from each treatment group were analyzed for alanine and proline concentration. Alanine and proline accumulation generally increased in proportion to the osmotic stress up to 60–100% seawater — additional osmotic stress failed to increase total accumulation. Prior exposure to fluctuating salinity increased the extent of alanine and proline retention observed upon transfer to a hypo-osmotic medium. The treatment group which had experienced the most extreme fluctuation (50–100% seawater) retained alanine and proline levels approximately 10- and 20-fold higher, respectively, than controls. A less severe salinity fluctuation was required to elicit this response for alanine (90–100% seawater) than for proline (60–100% seawater). Previous exposure to fluctuating salinity also resulted in increased alanine and proline accumulation in subsequent episodes of hyperosmotic stress. 24 h after transfer from 50 to 100% seawater, alanine and proline levels in the conditioned copepods were approximately 3- and 7-fold higher, respectively, than in copepods which had not been cycled. This facilitation in alanine and proline accumulation occurred after 10 and 11 cycles, respectively. Of the increased accumulation in alanine and proline, 7.0% and 22.5%, respectively, could be accounted for by the higher degree of FAA retention while under hypo-osmotic conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47130/1/360_2004_Article_BF00692733.pd
Nitrate reduction capacity is limited by belowground plant recovery in a 32‐year‐old created salt marsh
Effects of Environmental Variation and Non-point Source (NPS) Nutrient Pollution on Aquatic Plant Communities in Weeks Bay National Estuarine Research Reserve (WBNERR), AL
Distributional patterns of mobile fauna associated with Halimeda on the Tiahura coral-reef complex (Moorea, French Polynesia)
Landscape Dynamics and the Control of Infectious Diseases: The Question of Integrating Health into Coviability
International audienc
Sex-specific rejection in mate-guarding pair formation in the intertidal copepod, Tigriopus californicus
Ecological determinants of pathogen infection in howler monkeys
Infectious diseases caused by pathogens are now recognized as one of the most important threats to primate conservation. The fact that howler monkeys (Alouatta spp.) are widely distributed from Southern Mexico to Northern Argentina, inhabit a diverse array of habitats, and are considered pioneers, particularly adapted to exploit marginal habitats, provides an opportunity to explore general trends of parasitism and evaluate the dynamics of infectious diseases in this genus. We take a meta-analysis approach to examine the effect of ecological and environmental variables on parasitic infection using data from 7 howler monkey species at more than 35 sites throughout their distribution. We found that different factors including precipitation, latitude, altitude, and human proximity may infl uence parasite infection depending on the parasite type. We also found that parasites infecting howler monkeys followed a right-skewed distribution, suggesting that only a few individuals harbor infections. This result highlights the importance of collecting large sample sizes when developing these kinds of studies. We suggest that future studies should focus on obtaining fi ne-grained measurements of ecological and microclimate changes to provide better insights into the proximate factors that promote parasitism.Fil: Martinez Mota, Rodolfo. University of Illinois at Urbana-Champaign; Estados UnidosFil: Kowalewski, Miguel Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia". Estación Biológica de Usos Múltiples (Sede Corrientes); ArgentinaFil: Gillespie, Thomas R.. Emory University; Estados Unido
