9 research outputs found
Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes.
Full-length HIV-1 genome sequencing provides important data needed to address several vaccine design, molecular epidemiologic and pathogenesis questions. A protocol is presented for obtaining near full-length genomes (NFLGs) from subjects infected with HIV-1 subtype C. This protocol was used to amplify NFLGs from 244 of 366 (67%) samples collected at two clinics in Durban, South Africa (SK and PS). Viral load was directly associated with frequency of successful NFLG amplification for both cohorts (PS; p = 0.005 and SK; p < 0.001). Seventeen of 38 initially NFLG-negative SK samples had variation within the PCR primer binding sites, however only 3 of these were successfully re-amplified using re-designed primers homologous to the target viruses. NFLGs were obtained from 7 of 24 PBMC samples processed from subjects whose plasma did not yield a NFLG. Stable plasmid clones were obtained from all 244 NFLG-positive PCR products, and both strands of each genome were sequenced, using a primary set of 46 primers. These methods thus allow the large-scale collection of HIV-1 NFLGs from populations infected primarily with subtype C. The methods are readily adaptable to other HIV-1 subtypes, and provide materials for viral functional analyses and population-based molecular epidemiology studies that include analysis of viral genome chimerization
Morphological and molecular variation in natural populations of Betula
Molecular variation within morphologically variable natural populations of Betula pendula Roth, (diploid) and Betula pubescens Ehrh. (tetraploid) was investigated using RFLP and RAPD techniques. RFLP analysis of rDNA showed a high degree of polymorphism within and between individuals of both cytotypes in spacer length variation. Analysis of randomly amplified genomic DNA fragments, within one population, showed little differentiation between cytotypes. In East Anglian populations, diploid and tetraploid Betula are distinct neither on the basis of morphological nor molecular characters