6,993 research outputs found
Colored Resonant Signals at the LHC: Largest Rate and Simplest Topology
We study the colored resonance production at the LHC in a most general
approach. We classify the possible colored resonances based on group theory
decomposition, and construct their effective interactions with light partons.
The production cross section from annihilation of valence quarks or gluons may
be on the order of 400 - 1000 pb at LHC energies for a mass of 1 TeV with
nominal couplings, leading to the largest production rates for new physics at
the TeV scale, and simplest event topology with dijet final states. We apply
the new dijet data from the LHC experiments to put bounds on various possible
colored resonant states. The current bounds range from 0.9 to 2.7 TeV. The
formulation is readily applicable for future searches including other decay
modes.Comment: 29 pages, 9 figures. References updated and additional K-factors
include
Effects of Chloride ions on Carbonation Rate of Hardened Cement Paste by X-ray CT Techniques
Corrosion of steel bars in concrete structures is initiated as a result of concrete carbonation and/or chloride intrusion, and influenced by their interaction. This paper presents an experimental investigation into the effect of chloride ions on carbonation of cement paste by means of X-ray CT techniques and mercury intrusion porosimetry(MIP), which is benchmarked by the conventional phenolphthalein method. A group of the cement paste cylinders with different amounts of chlorides ions were manufactured and cured before they were subjected to an accelerated carbonation process in a conditional cabinet regime for different ages. The carbonation front of the cement paste was first evaluated using phenolphthalein method. This was followed by an investigation of microstructure evolution of the cement paste using XCT and MIP techniques. The experimental results show that the carbonation of a cement paste increases with its water to cement ratio and with carbonation ages, but decrease with its amount of chloride ions. In particular, it has been found that increases of chloride ion of a cement paste refine its porous structures, decrease its porosity and eventually mitigate its carbonation rate. The relevant results can be referred to for durability design and prediction of reinforced concrete structures
Bounds and Decays of New Heavy Vector-like Top Partners
We study the phenomenology of new heavy vector-like fermions that couple to
the third generation quarks via Yukawa interactions, covering all the allowed
representations under the standard model gauge groups. We first review tree and
loop level bounds on these states. We then discuss tree level decays and
loop-induced decays to photon or gluon plus top. The main decays at tree level
are to W b and/or Z and Higgs plus top via the new Yukawa couplings. The
radiative loop decays turn out to be quite close to the naive estimate: in all
cases, in the allowed perturbative parameter space, the branching ratios are
mildly sensitive on the new Yukawa couplings and small. We therefore conclude
that the new states can be observed at the LHC and that the tree level decays
can allow to distinguish the different representations. Moreover, the
observation of the radiative decays at the LHC would suggest a large Yukawa
coupling in the non-perturbative regime.Comment: 32 pages, 2 tables, 10 figure
Neutrino masses from new generations
We reconsider the possibility that Majorana masses for the three known
neutrinos are generated radiatively by the presence of a fourth generation and
one right-handed neutrino with Yukawa couplings and a Majorana mass term. We
find that the observed light neutrino mass hierarchy is not compatible with low
energy universality bounds in this minimal scenario, but all present data can
be accommodated with five generations and two right-handed neutrinos. Within
this framework, we explore the parameter space regions which are currently
allowed and could lead to observable effects in neutrinoless double beta decay,
conversion in nuclei and experiments. We
also discuss the detection prospects at LHC.Comment: 28 pages, 4 figures. Version to be published. Some typos corrected.
Improved figures 3 and
Sequence learning in Associative Neuronal-Astrocytic Network
The neuronal paradigm of studying the brain has left us with limitations in
both our understanding of how neurons process information to achieve biological
intelligence and how such knowledge may be translated into artificial
intelligence and its most brain-derived branch, neuromorphic computing.
Overturning our fundamental assumptions of how the brain works, the recent
exploration of astrocytes is revealing that these long-neglected brain cells
dynamically regulate learning by interacting with neuronal activity at the
synaptic level. Following recent experimental evidence, we designed an
associative, Hopfield-type, neuronal-astrocytic network and analyzed the
dynamics of the interaction between neurons and astrocytes. We show that
astrocytes were sufficient to trigger transitions between learned memories in
the neuronal component of the network. Further, we mathematically derived the
timing of the transitions that was governed by the dynamics of the
calcium-dependent slow-currents in the astrocytic processes. Overall, we
provide a brain-morphic mechanism for sequence learning that is inspired by,
and aligns with, recent experimental findings. To evaluate our model, we
emulated astrocytic atrophy and showed that memory recall becomes significantly
impaired after a critical point of affected astrocytes was reached. This
brain-inspired and brain-validated approach supports our ongoing efforts to
incorporate non-neuronal computing elements in neuromorphic information
processing.Comment: 8 pages, 5 figure
Exploring the Higgs Portal with 10/fb at the LHC
We consider the impact of new exotic colored and/or charged matter
interacting through the Higgs portal on Standard Model Higgs boson searches at
the LHC. Such Higgs portal couplings can induce shifts in the effective
Higgs-gluon-gluon and Higgs-photon-photon couplings, thus modifying the Higgs
production and decay patterns. We consider two possible interpretations of the
current LHC Higgs searches based on ~ 5/fb of data at each detector: 1) a Higgs
boson in the mass range (124-126) GeV and 2) a `hidden' heavy Higgs boson which
is underproduced due to the suppression of its gluon fusion production cross
section. We first perform a model independent analysis of the allowed sizes of
such shifts in light of the current LHC data. As a class of possible candidates
for new physics which gives rise to such shifts, we investigate the effects of
new scalar multiplets charged under the Standard Model gauge symmetries. We
determine the scalar parameter space that is allowed by current LHC Higgs
searches, and compare with complementary LHC searches that are sensitive to the
direct production of colored scalar states.Comment: 27 pages, 11 figures; v2: references added, correction to scalar form
factor, numerical results updated with Moriond 2012 data, conclusions
unchange
Probing Colored Particles with Photons, Leptons, and Jets
If pairs of new colored particles are produced at the Large Hadron Collider,
determining their quantum numbers, and even discovering them, can be
non-trivial. We suggest that valuable information can be obtained by measuring
the resonant signals of their near-threshold QCD bound states. If the particles
are charged, the resulting signatures include photons and leptons and are
sufficiently rich for unambiguously determining their various quantum numbers,
including the charge, color representation and spin, and obtaining a precise
mass measurement. These signals provide well-motivated benchmark models for
resonance searches in the dijet, photon+jet, diphoton and dilepton channels.
While these measurements require that the lifetime of the new particles be not
too short, the resulting limits, unlike those from direct searches for pair
production above threshold, do not depend on the particles' decay modes. These
limits may be competitive with more direct searches if the particles decay in
an obscure way.Comment: 39 pages, 9 figures; v2: more recent searches include
Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.
Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies
- …
