96 research outputs found

    Structure of a double ubiquitin-like domain in the talin head: a role in integrin activation

    Get PDF
    Talin is a 270-kDa protein that activates integrins and couples them to cytoskeletal actin. Talin contains an N-terminal FERM domain comprised of F1, F2 and F3 domains, but it is atypical in that F1 contains a large insert and is preceded by an extra domain F0. Although F3 contains the binding site for β-integrin tails, F0 and F1 are also required for activation of β1-integrins. Here, we report the solution structures of F0, F1 and of the F0F1 double domain. Both F0 and F1 have ubiquitin-like folds joined in a novel fixed orientation by an extensive charged interface. The F1 insert forms a loop with helical propensity, and basic residues predicted to reside on one surface of the helix are required for binding to acidic phospholipids and for talin-mediated activation of β1-integrins. This and the fact that basic residues on F2 and F3 are also essential for integrin activation suggest that extensive interactions between the talin FERM domain and acidic membrane phospholipids are required to orientate the FERM domain such that it can activate integrins

    DroID: the Drosophila Interactions Database, a comprehensive resource for annotated gene and protein interactions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Charting the interactions among genes and among their protein products is essential for understanding biological systems. A flood of interaction data is emerging from high throughput technologies, computational approaches, and literature mining methods. Quick and efficient access to this data has become a critical issue for biologists. Several excellent multi-organism databases for gene and protein interactions are available, yet most of these have understandable difficulty maintaining comprehensive information for any one organism. No single database, for example, includes all available interactions, integrated gene expression data, and comprehensive and searchable gene information for the important model organism, <it>Drosophila melanogaster</it>.</p> <p>Description</p> <p>DroID, the <it>Drosophila </it>Interactions Database, is a comprehensive interactions database designed specifically for <it>Drosophila</it>. DroID houses published physical protein interactions, genetic interactions, and computationally predicted interactions, including interologs based on data for other model organisms and humans. All interactions are annotated with original experimental data and source information. DroID can be searched and filtered based on interaction information or a comprehensive set of gene attributes from Flybase. DroID also contains gene expression and expression correlation data that can be searched and used to filter datasets, for example, to focus a study on sub-networks of co-expressed genes. To address the inherent noise in interaction data, DroID employs an updatable confidence scoring system that assigns a score to each physical interaction based on the likelihood that it represents a biologically significant link.</p> <p>Conclusion</p> <p>DroID is the most comprehensive interactions database available for <it>Drosophila</it>. To facilitate downstream analyses, interactions are annotated with original experimental information, gene expression data, and confidence scores. All data in DroID are freely available and can be searched, explored, and downloaded through three different interfaces, including a text based web site, a Java applet with dynamic graphing capabilities (IM Browser), and a Cytoscape plug-in. DroID is available at <url>http://www.droidb.org</url>.</p

    Sensitivity of Global Translation to mTOR Inhibition in REN Cells Depends on the Equilibrium between eIF4E and 4E-BP1

    Get PDF
    Initiation is the rate-limiting phase of protein synthesis, controlled by signaling pathways regulating the phosphorylation of translation factors. Initiation has three steps, 43S, 48S and 80S formation. 43S formation is repressed by eIF2α phosphorylation. The subsequent steps, 48S and 80S formation are enabled by growth factors. 48S relies on eIF4E-mediated assembly of eIF4F complex; 4E-BPs competitively displace eIF4E from eIF4F. Two pathways control eIF4F: 1) mTORc1 phosphorylates and inactivates 4E-BPs, leading to eIF4F formation; 2) the Ras-Mnk cascade phosphorylates eIF4E. We show that REN and NCI-H28 mesothelioma cells have constitutive activation of both pathways and maximal translation rate, in the absence of exogenous growth factors. Translation is rapidly abrogated by phosphorylation of eIF2α. Surprisingly, pharmacological inhibition of mTORc1 leads to the complete dephosphorylation of downstream targets, without changes in methionine incorporation. In addition, the combined administration of mTORc1 and MAPK/Mnk inhibitors has no additive effect. The inhibition of both mTORc1 and mTORc2 does not affect the metabolic rate. In spite of this, mTORc1 inhibition reduces eIF4F complex formation, and depresses translocation of TOP mRNAs on polysomes. Downregulation of eIF4E and overexpression of 4E-BP1 induce rapamycin sensitivity, suggesting that disruption of eIF4F complex, due to eIF4E modulation, competes with its recycling to ribosomes. These data suggest the existence of a dynamic equilibrium in which eIF4F is not essential for all mRNAs and is not displaced from translated mRNAs, before recycling to the next

    MAP4K3 Is a Component of the TORC1 Signalling Complex that Modulates Cell Growth and Viability in Drosophila melanogaster

    Get PDF
    Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability

    MMP-9, uPAR and Cathepsin B Silencing Downregulate Integrins in Human Glioma Xenograft Cells In Vitro and In Vivo in Nude Mice

    Get PDF
    Involvement of MMP-9, uPAR and cathepsin B in adhesion, migration, invasion, proliferation, metastasis and tumor growth has been well established. In the present study, MMP-9, uPAR and cathepsin B genes were downregulated in glioma xenograft cells using shRNA plasmid constructs and we evaluated the involvement of integrins and changes in their adhesion, migration and invasive potential.MMP-9, uPAR and cathepsin B single shRNA plasmid constructs were used to downregulate these molecules in xenograft cells. We also used MMP-9/uPAR and MMP-9/cathepsin B bicistronic constructs to evaluate the cumulative effects. MMP-9, uPAR and cathepsin B downregulation significantly inhibits xenograft cell adhesion to several extracellular matrix proteins. Treatment with MMP-9, uPAR and cathepsin B shRNA of xenografts led to the downregulation of several alpha and beta integrins. In all the assays, we noticed more prominent effects with the bicistronic plasmid constructs when compared to the single plasmid shRNA constructs. FACS analysis demonstrated the expression of alphaVbeta3, alpha6beta1 and alpha9beta1 integrins in xenograft cells. Treatment with bicistronic constructs reduced alphaVbeta3, alpha6beta1 and alpha9beta1 integrin expressions in xenograft injected nude mice. Migration and invasion were also inhibited by MMP-9, uPAR and cathepsin B shRNA treatments as assessed by spheroid migration, wound healing, and Matrigel invasion assays. As expected, bicistronic constructs further inhibited the adhesion, migration and invasive potential of the xenograft cells as compared to individual treatments.Downregulation of MMP-9, uPAR and cathespin B alone and in combination inhibits adhesion, migration and invasive potential of glioma xenografts by downregulating integrins and associated signaling molecules. Considering the existence of integrin inhibitor-resistant cancer cells, our study provides a novel and effective approach to inhibiting integrins by downregulating MMP-9, uPAR and cathepsin B in the treatment of glioma

    Expression and regulation of type 2A protein phosphatases and alpha4 signalling in cardiac health and hypertrophy

    Get PDF
    Abstract Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACb[PP2ACa[PP4C[PP6C), NRVM (PP2ACb[PP2ACa = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACa[ PP2ACb[PP6C[PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition. Short-term knockdown of alpha4 protein expression attenuated expression of all type 2A catalytic subunits. Pressure overload-induced left ventricular (LV) hypertrophy was associated with an increase in both PP2AC and alpha4 protein expression. Although PP6C expression was unchanged, expression of PP6C regulatory subunits (1) Sit4-associated protein 1 (SAP1) and (2) ankyrin repeat domain (ANKRD) 28 and 44 proteins was elevated, whereas SAP2 expression was reduced in hypertrophied LV tissue. Co-immunoprecipitation studies demonstrated that the interaction between alpha4 and PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV tissue, respectively. Phosphorylation status of phospholemman (Ser63 and Ser68) was significantly increased by knockdown of PP2ACa, PP2ACb, or PP4C protein expression. DNA damage assessed by histone H2A.X phosphorylation (cH2A.X) in hypertrophied tissue remained unchanged. However, exposure of cardiomyocytes to H2O2 increased levels of cH2A.X which was unaffected by knockdown of PP6C expression, but was abolished by the short-term knockdown of alpha4 expression. This study illustrates the significance and altered activity of the type 2A protein phosphatase-alpha4 complex in healthy and hypertrophied myocardium

    Painful and painless mutations of SCN9A and SCN11A voltage-gated sodium channels

    Get PDF
    Chronic pain is a global problem affecting up to 20% of the world’s population and has a significant economic, social and personal cost to society. Sensory neurons of the dorsal root ganglia (DRG) detect noxious stimuli and transmit this sensory information to regions of the central nervous system (CNS) where activity is perceived as pain. DRG neurons express multiple voltage-gated sodium channels that underlie their excitability. Research over the last 20 years has provided valuable insights into the critical roles that two channels, NaV1.7 and NaV1.9, play in pain signalling in man. Gain of function mutations in NaV1.7 cause painful conditions while loss of function mutations cause complete insensitivity to pain. Only gain of function mutations have been reported for NaV1.9. However, while most NaV1.9 mutations lead to painful conditions, a few are reported to cause insensitivity to pain. The critical roles these channels play in pain along with their low expression in the CNS and heart muscle suggest they are valid targets for novel analgesic drugs

    A biomaterials approach to influence stem cell fate in injectable cell-based therapies

    Get PDF
    Background Numerous stem cell therapies use injection-based administration to deliver high-density cell preparations. However, cell retention rates as low as 1% have been observed within days of transplantation. This study investigated the effects of varying administration and formulation parameters of injection-based administration on cell dose recovery and differentiation fate choice of human mesenchymal stem cells. Methods The impact of ejection rate via clinically relevant Hamilton micro-syringes and biomaterial-assisted delivery was investigated. Cell viability, the percentage of cell dose delivered as viable cells, proliferation capacity as well as differentiation behaviour in bipotential media were assessed. Characterisation of the biomaterial-based cell carriers was also carried out. Results A significant improvement of in-vitro dose recovery in cells co-ejected with natural biomaterials was observed, with ejections within 2% (w/v) gelatin resulting in 87.5 ± 14% of the cell dose being delivered as viable cells, compared to 32.2 ± 19% of the dose ejected in the commonly used saline vehicle at 10 μl/min. Improvement in cell recovery was not associated with the rheological properties of biomaterials utilised, as suggested by previous studies. The extent of osteogenic differentiation was shown to be substantially altered by choice of ejection rate and cell carrier, despite limited contact time with cells during ejection. Collagen type I and bone-derived extracellular matrix cell carriers yielded significant increases in mineralised matrix deposited at day 21 relative to PBS. Conclusions An enhanced understanding of how administration protocols and biomaterials influence cell recovery, differentiation capacity and choice of fate will facilitate the development of improved administration and formulation approaches to achieve higher efficacy in stem cell transplantation
    corecore