120 research outputs found
Four methods for determining the composition of trace radioactive surface contamination of low-radioactivity metal
Four methods for determining the composition of low-level uranium- and
thorium-chain surface contamination are presented. One method is the
observation of Cherenkov light production in water. In two additional methods a
position-sensitive proportional counter surrounding the surface is used to make
both a measurement of the energy spectrum of alpha particle emissions and also
coincidence measurements to derive the thorium-chain content based on the
presence of short-lived isotopes in that decay chain. The fourth method is a
radiochemical technique in which the surface is eluted with a weak acid, the
eluate is concentrated, added to liquid scintillator and assayed by recording
beta-alpha coincidences. These methods were used to characterize two `hotspots'
on the outer surface of one of the He-3 proportional counters in the Neutral
Current Detection array of the Sudbury Neutrino Observatory experiment. The
methods have similar sensitivities, of order tens of ng, to both thorium- and
uranium-chain contamination.Comment: 22 pages, 19 figure
Negative Energy Density in Calabi-Yau Compactifications
We show that a large class of supersymmetric compactifications, including all
simply connected Calabi-Yau and G_2 manifolds, have classical configurations
with negative energy density as seen from four dimensions. In fact, the energy
density can be arbitrarily negative -- it is unbounded from below.
Nevertheless, positive energy theorems show that the total ADM energy remains
positive. Physical consequences of the negative energy density include new
thermal instabilities, and possible violations of cosmic censorship.Comment: 25 pages, v2: few clarifying comments and reference adde
The calibration of the Sudbury Neutrino Observatory using uniformly distributed radioactive sources
The production and analysis of distributed sources of 24Na and 222Rn in the
Sudbury Neutrino Observatory (SNO) are described. These unique sources provided
accurate calibrations of the response to neutrons, produced through
photodisintegration of the deuterons in the heavy water target, and to low
energy betas and gammas. The application of these sources in determining the
neutron detection efficiency and response of the 3He proportional counter
array, and the characteristics of background Cherenkov light from trace amounts
of natural radioactivity is described.Comment: 24 pages, 13 figure
Design, development and verification of the 30 and 44 GHz front-end modules for the Planck Low Frequency Instrument
We give a description of the design, construction and testing of the 30 and
44 GHz Front End Modules (FEMs) for the Low Frequency Instrument (LFI) of the
Planck mission to be launched in 2009. The scientific requirements of the
mission determine the performance parameters to be met by the FEMs, including
their linear polarization characteristics.
The FEM design is that of a differential pseudo-correlation radiometer in
which the signal from the sky is compared with a 4-K blackbody load. The Low
Noise Amplifier (LNA) at the heart of the FEM is based on indium phosphide High
Electron Mobility Transistors (HEMTs). The radiometer incorporates a novel
phase-switch design which gives excellent amplitude and phase match across the
band.
The noise temperature requirements are met within the measurement errors at
the two frequencies. For the most sensitive LNAs, the noise temperature at the
band centre is 3 and 5 times the quantum limit at 30 and 44 GHz respectively.
For some of the FEMs, the noise temperature is still falling as the ambient
temperature is reduced to 20 K. Stability tests of the FEMs, including a
measurement of the 1/f knee frequency, also meet mission requirements.
The 30 and 44 GHz FEMs have met or bettered the mission requirements in all
critical aspects. The most sensitive LNAs have reached new limits of noise
temperature for HEMTs at their band centres. The FEMs have well-defined linear
polarization characteristcs.Comment: 39 pages, 33 figures (33 EPS files), 12 tables. Planck LFI technical
papers published by JINST:
http://www.iop.org/EJ/journal/-page=extra.proc5/1748-022
De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter
When de Sitter first introduced his celebrated spacetime, he claimed,
following Schwarzschild, that its spatial sections have the topology of the
real projective space RP^3 (that is, the topology of the group manifold SO(3))
rather than, as is almost universally assumed today, that of the sphere S^3.
(In modern language, Schwarzschild was disturbed by the non-local correlations
enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not
have been accepted as such by de Sitter. There is no real basis within
classical cosmology for preferring S^3 to RP^3, but the general feeling appears
to be that the distinction is in any case of little importance. We wish to
argue that, in the light of current concerns about the nature of de Sitter
space, this is a mistake. In particular, we argue that the difference between
"dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of
understanding horizon entropies. In the approach to de Sitter entropy via
Schwarzschild-de Sitter spacetime, we find that the apparently trivial
difference between RP^3 and S^3 actually leads to very different perspectives
on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers
finally fixed, JHEP versio
Measurement of the scintillation time spectra and pulse-shape discrimination of low-energy beta and nuclear recoils in liquid argon with DEAP-1
The DEAP-1 low-background liquid argon detector was used to measure
scintillation pulse shapes of electron and nuclear recoil events and to
demonstrate the feasibility of pulse-shape discrimination (PSD) down to an
electron-equivalent energy of 20 keV.
In the surface dataset using a triple-coincidence tag we found the fraction
of beta events that are misidentified as nuclear recoils to be (90% C.L.) for energies between 43-86 keVee and for a nuclear recoil
acceptance of at least 90%, with 4% systematic uncertainty on the absolute
energy scale. The discrimination measurement on surface was limited by nuclear
recoils induced by cosmic-ray generated neutrons. This was improved by moving
the detector to the SNOLAB underground laboratory, where the reduced background
rate allowed the same measurement with only a double-coincidence tag.
The combined data set contains events. One of those, in the
underground data set, is in the nuclear-recoil region of interest. Taking into
account the expected background of 0.48 events coming from random pileup, the
resulting upper limit on the electronic recoil contamination is
(90% C.L.) between 44-89 keVee and for a nuclear recoil
acceptance of at least 90%, with 6% systematic uncertainty on the absolute
energy scale.
We developed a general mathematical framework to describe PSD parameter
distributions and used it to build an analytical model of the distributions
observed in DEAP-1. Using this model, we project a misidentification fraction
of approx. for an electron-equivalent energy threshold of 15 keV for
a detector with 8 PE/keVee light yield. This reduction enables a search for
spin-independent scattering of WIMPs from 1000 kg of liquid argon with a
WIMP-nucleon cross-section sensitivity of cm, assuming
negligible contribution from nuclear recoil backgrounds.Comment: Accepted for publication in Astroparticle Physic
Genome-wide association study identifies 30 Loci Associated with Bipolar Disorder
This paper is dedicated to the memory of Psychiatric Genomics Consortium (PGC) founding member and Bipolar disorder working group co-chair Pamela Sklar. We thank the participants who donated their time, experiences and DNA to this research, and to the clinical and scientific teams that worked with them. We are deeply indebted to the investigators who comprise the PGC. The views expressed are those of the authors and not necessarily those of any funding or regulatory body. Analyses were carried out on the NL Genetic Cluster Computer (http://www.geneticcluster.org ) hosted by SURFsara, and the Mount Sinai high performance computing cluster (http://hpc.mssm.edu).Bipolar disorder is a highly heritable psychiatric disorder. We performed a genome-wide association study including 20,352 cases and 31,358 controls of European descent, with follow-up analysis of 822 variants with P<1x10-4 in an additional 9,412 cases and 137,760 controls. Eight of the 19 variants that were genome-wide significant (GWS, p < 5x10-8) in the discovery GWAS were not GWS in the combined analysis, consistent with small effect sizes and limited power but also with genetic heterogeneity. In the combined analysis 30 loci were GWS including 20 novel loci. The significant loci contain genes encoding ion channels, neurotransmitter transporters and synaptic components. Pathway analysis revealed nine significantly enriched gene-sets including regulation of insulin secretion and endocannabinoid signaling. BDI is strongly genetically correlated with schizophrenia, driven by psychosis, whereas BDII is more strongly correlated with major depressive disorder. These findings address key clinical questions and provide potential new biological mechanisms for BD.This work was funded in part by the Brain and Behavior Research Foundation, Stanley Medical Research Institute, University of Michigan, Pritzker Neuropsychiatric Disorders Research Fund L.L.C., Marriot Foundation and the Mayo Clinic Center for Individualized Medicine, the NIMH Intramural Research Program; Canadian Institutes of Health Research; the UK Maudsley NHS Foundation Trust, NIHR, NRS, MRC, Wellcome Trust; European Research Council; German Ministry for Education and Research, German Research Foundation IZKF of Münster, Deutsche Forschungsgemeinschaft, ImmunoSensation, the Dr. Lisa-Oehler Foundation, University of Bonn; the Swiss National Science Foundation; French Foundation FondaMental and ANR; Spanish Ministerio de Economía, CIBERSAM, Industria y Competitividad, European Regional Development Fund (ERDF), Generalitat de Catalunya, EU Horizon 2020 Research and Innovation Programme; BBMRI-NL; South-East Norway Regional Health Authority and Mrs. Throne-Holst; Swedish Research Council, Stockholm County Council, Söderström Foundation; Lundbeck Foundation, Aarhus University; Australia NHMRC, NSW Ministry of Health, Janette M O'Neil and Betty C Lynch
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
- …