50 research outputs found
Spin Nomenclature for Semiconductors and Magnetic Metals
The different conventions used in the semiconductor and magnetic metals
communities can cause confusion in the context of spin polarization and
transport in simple heterostructures. In semiconductors, terminology is based
on the orientation of the electron spin, while in magnetic metals it is based
on the orientation of the moment. In the rapidly expanding field of
spintronics, where both semiconductors and metallic metals are important, some
commonly used terms ("spin-up," "majority spin") can have different meanings.
Here, we clarify nomenclature relevant to spin transport and optical
polarization by relating the common physical observables and "definitions" of
spin polarization to the fundamental concept of conservation of angular
momentum within a well-defined reference frame.Comment: 3 pages, 2 figures, 16 reference
Electrical Detection of Charge-to- spin and Spin-to-Charge Conversion in a Topological Insulator Bi2Te3 Using BN/Al2O3 Hybrid Tunnel Barrier
One of the most striking properties of three-dimensional topological insulators (TIs) is spin-momentum locking, where the spin is locked at right angles to momentum and hence an unpolarized charge current creates a net spin polarization. Alternatively, if a net spin is injected into the TI surface state system, it is distinctively associated with a unique carrier momentum and hence should generate a charge accumulation, as in the so-called inverse Edelstein effect. Here using a Fe/Al2O3/BN tunnel barrier, we demonstrate both effects in a single device in Bi2Te3: the electrical detection of the spin accumulationgenerated by an unpolarized current flowing through the surface states, and that of the charge accumulation generated by spins injected into the surface state system. This work is the first to utilize BN as part of a hybrid tunnel barrier on TI, where we observed a high spin polarization of 93% for the TI surfaces states. The reverse spin-to-charge measurement is an independent confirmation that spin and momentum are locked in the surface states of TI, and offers additional avenues for spin manipulation. It further demonstrates the robustness and versatility of electrical access to the spin system within TI surface states, an important step towards its utilization in TI-based spintronics devices
Modelling of Optical Detection of Spin-Polarized Carrier Injection into Light-Emitting Devices
We investigate the emission of multimodal polarized light from Light Emitting
Devices due to spin-aligned carriers injection. The results are derived through
operator Langevin equations, which include thermal and carrier-injection
fluctuations, as well as non-radiative recombination and electronic g-factor
temperature dependence. We study the dynamics of the optoelectronic processes
and show how the temperature-dependent g-factor and magnetic field affect the
polarization degree of the emitted light. In addition, at high temperatures,
thermal fluctuation reduces the efficiency of the optoelectronic detection
method for measuring spin-polarization degree of carrier injection into
non-magnetic semicondutors.Comment: 15 pages, 7 figures, replaced by revised version. To appear in Phys.
Rev.
Electron Spin Injection at a Schottky Contact
We investigate theoretically electrical spin injection at a Schottky contact
between a spin-polarized electrode and a non-magnetic semiconductor. Current
and electron density spin-polarizations are discussed as functions of barrier
energy and semiconductor doping density. The effect of a spin-dependent
interface resistance that results from a tunneling region at the
contact/semiconductor interface is described. The model can serve as a guide
for designing spin-injection experiments with regard to the interface
properties and device structure.Comment: 4 pages, 4 figure
Spin filtering and magnetoresistance in ballistic tunnel junctions
We theoretically investigate magnetoresistance (MR) effects in connection
with spin filtering in quantum-coherent transport through tunnel junctions
based on non-magnetic/semimagnetic heterostructures. We find that spin
filtering in conjunction with the suppression/enhancement of the spin-dependent
Fermi seas in semimagnetic contacts gives rise to (i) spin-split kinks in the
MR of single barriers and (ii) a robust beating pattern in the MR of double
barriers with a semimagnetic well. We believe these are unique signatures for
quantum filtering.Comment: Added references + corrected typo
Spin oscillations in transient diffusion of a spin pulse in n-type semiconductor quantum wells
By studying the time and spatial evolution of a pulse of the spin
polarization in -type semiconductor quantum wells, we highlight the
importance of the off-diagonal spin coherence in spin diffusion and transport.
Spin oscillations and spin polarization reverse along the the direction of spin
diffusion in the absence of the applied magnetic field are predicted from our
investigation.Comment: 5 pages, 4 figures, accepted for publication in PR
Spin-Polarized Electron Transport at Ferromagnet/Semiconductor Schottky Contacts
We theoretically investigate electron spin injection and spin-polarization
sensitive current detection at Schottky contacts between a ferromagnetic metal
and an n-type or p-type semiconductor. We use spin-dependent continuity
equations and transport equations at the drift-diffusion level of
approximation. Spin-polarized electron current and density in the semiconductor
are described for four scenarios corresponding to the injection or the
collection of spin polarized electrons at Schottky contacts to n-type or p-type
semiconductors. The transport properties of the interface are described by a
spin-dependent interface resistance, resulting from an interfacial tunneling
region. The spin-dependent interface resistance is crucial for achieving spin
injection or spin polarization sensitivity in these configurations. We find
that the depletion region resulting from Schottky barrier formation at a
metal/semiconductor interface is detrimental to both spin injection and spin
detection. However, the depletion region can be tailored using a doping density
profile to minimize these deleterious effects. For example, a heavily doped
region near the interface, such as a delta-doped layer, can be used to form a
sharp potential profile through which electrons tunnel to reduce the effective
Schottky energy barrier that determines the magnitude of the depletion region.
The model results indicate that efficient spin-injection and spin-polarization
detection can be achieved in properly designed structures and can serve as a
guide for the structure design.Comment: RevTex
Spin injection through the depletion layer: a theory of spin-polarized p-n junctions and solar cells
A drift-diffusion model for spin-charge transport in spin-polarized {\it p-n}
junctions is developed and solved numerically for a realistic set of material
parameters based on GaAs. It is demonstrated that spin polarization can be
injected through the depletion layer by both minority and majority carriers,
making all-semiconductor devices such as spin-polarized solar cells and bipolar
transistors feasible. Spin-polarized {\it p-n} junctions allow for
spin-polarized current generation, spin amplification, voltage control of spin
polarization, and a significant extension of spin diffusion range.Comment: 4 pages, 3 figure
Electric-field dependent spin diffusion and spin injection into semiconductors
We derive a drift-diffusion equation for spin polarization in semiconductors
by consistently taking into account electric-field effects and nondegenerate
electron statistics. We identify a high-field diffusive regime which has no
analogue in metals. In this regime there are two distinct spin diffusion
lengths. Furthermore, spin injection from a ferromagnetic metal into a
semiconductor is enhanced by several orders of magnitude and spins can be
transported over distances much greater than the low-field spin diffusion
length.Comment: 5 pages, 3 eps figure
Structural and magnetic properties of Fe/ZnSe(001) interfaces
We have performed first principles electronic structure calculations to
investigate the structural and magnetic properties of Fe/ZnSe(001) interfaces.
Calculations involving full geometry optimizations have been carried out for a
broad range of thickness of Fe layers(0.5 monolayer to 10 monolayers) on top of
a ZnSe(001) substrate. Both Zn and Se terminated interfaces have been explored.
Total energy calculations show that Se segregates at the surface which is in
agreement with recent experiments.
For both Zn and Se terminations, the interface Fe magnetic moments are higher
than the bulk bcc Fe moment.
We have also investigated the effect of adding Fe atoms on top of a
reconstructed ZnSe surface to explore the role of reconstruction of
semiconductor surfaces in determining properties of metal-semiconductor
interfaces. Fe breaks the Se dimer bond formed for a Se-rich (2x1)
reconstructed surface. Finally, we looked at the reverse growth i.e. growth of
Zn and Se atoms on a bcc Fe(001) substrate to investigate the properties of the
second interface of a magnetotunnel junction. The results are in good agreement
with the theoretical and experimental results, wherever available.Comment: 7 pages, 8 figures, accepted for publication in PR