14 research outputs found
Kohn Anomalies in Superconductors
I present the detailed behavior of phonon dispersion curves near momenta
which span the electronic Fermi sea in a superconductor. I demonstrate that an
anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's
dispersion curves when the frequency of the phonon spanning the Fermi sea
exceeds twice the superconducting energy gap. This anomaly occurs at
approximately the same momentum but is {\it stronger} than the normal-state
Kohn anomaly. It also survives at finite temperature, unlike the metallic
anomaly. Determination of Fermi surface diameters from the location of these
anomalies, therefore, may be more successful in the superconducting phase than
in the normal state. However, the superconductor's anomaly fades rapidly with
increased phonon frequency and becomes unobservable when the phonon frequency
greatly exceeds the gap. This constraint makes these anomalies useful only in
high-temperature superconductors such as .Comment: 18 pages (revtex) + 11 figures (upon request), NSF-ITP-93-7
Structure and Dynamics of Liquid Iron under Earth's Core Conditions
First-principles molecular dynamics simulations based on density-functional
theory and the projector augmented wave (PAW) technique have been used to study
the structural and dynamical properties of liquid iron under Earth's core
conditions. As evidence for the accuracy of the techniques, we present PAW
results for a range of solid-state properties of low- and high-pressure iron,
and compare them with experimental values and the results of other
first-principles calculations. In the liquid-state simulations, we address
particular effort to the study of finite-size effects, Brillouin-zone sampling
and other sources of technical error. Results for the radial distribution
function, the diffusion coefficient and the shear viscosity are presented for a
wide range of thermodynamic states relevant to the Earth's core. Throughout
this range, liquid iron is a close-packed simple liquid with a diffusion
coefficient and viscosity similar to those of typical simple liquids under
ambient conditions.Comment: 13 pages, 8 figure
The polaron-like nature of an electron coupled to phonons
When an electron interacts with phonons, the electron can exhibit either free
electron-like or polaron-like properties. The latter tends to occur for very
strong coupling, and results in a phonon cloud accompanying the electron as it
moves, thus raising its mass considerably. We summarize this behaviour for the
Holstein model in one, two and three dimensions, and note that the crossover
occurs for fairly low coupling strengths compared to those attributed to real
materials exhibiting conventional superconductivity.Comment: 5 pages; contains a summary of single particle results for the
Holstein mode
Recommended from our members
Temperature dependence of phonons in pyrolitic graphite
Dispersion curves for longitudinal and transverse phonons propagating along and near the c-axis in pyrolitic graphite at temperatures between 4/sup 0/K and 1500/sup 0/C have been measured by neutron spectroscopy. The observed frequencies decrease markedly with increasing temperature (except for the transverse optical ''rippling'' modes in the hexagonal planes). The neutron groups show interesting asymmetrical broadening ascribed to interference between one phonon and many phonon processes