444 research outputs found
Do Socially Anxious Teens use the Internet More? An Experience Sampling Method Study Exploring Technology Use and Mood
The current study examined mood and internet use in 109 young people (age M = 14.7yrs; 69% female) using Experience Sampling Methodology (ESM) over a 7-day period. Participants were classified as experiencing low or high social anxiety (LSA and HSA) and their mood, internet frequency, and online coping were compared. Young people high in social anxiety reported greater average worry, sadness and loneliness, than low socially anxious young people, who reported greater average happiness. In addition, social anxiety was found to be a positive predictor of online frequency and online coping in young people. Descriptive snapshots were also generated to illustrate the differing mood landscapes and internet use of young people
Physical or Visual: How do Girls Experience their Bodies during Sports and Non-Sport Activities?
Introduction: Body image is a major concern for many adolescents (Mission Australia, 2012; 2011; 2010; 2008), particularly for girls, who consistently report a more negative body image than males (Barker & Galambos, 2003; Cash, Fleming, Alindogan, Steadman, & Whitehead, 2002; Davison & McCabe, 2006; Furnham, Badman, & Sneade, 2002). Adolescent girls’ satisfaction with both their aesthetic and functional body dimensions has been found to decline during high school, at a rate that is greater than their male peers (Abbott, Barber & Dziurawiec, 2012). The experiences girls have with their bodies has the potential to influence the focus of their body perceptions. Therefore, exploring contexts that may foster positive body experiences among teenage girls is an integral step to improving their well-being.
Aims: The main aim of the current study was to examine the potential of the leisure context to elicit girls’ experiences of their physicality, specifically experiences of physical competence and body objectification. Both sports and non-sport activities were examined because each context has the potential to offer participants unique bodily experiences.
Method: Girls (N = 1002) aged 13-18 years (M = 14.6, SD = 1.01) from 34 high schools in Western Australia were surveyed regarding structured leisure participation (sports and non-sports), experiences of body objectification, experiences of physical competence, and Body Mass Index (BMI). The prevalence of girls’ experiences of body objectification and experiences of physical competence were compared between sporting and non-sporting leisure contexts. Differences in sport types were also explored by comparing the body experiences reported by girls during aesthetic and non-aesthetic sports. Both between group and within-person comparisons were made for sport types to address potential selection biases.
Results: Overall, girls reported having more experiences of physical competence than body objectification in both sport and non-sport activities. Sports were associated with a higher prevalence of body experiences across both body dimensions compared to non-sports. Bodily experiences differed between aesthetic and non-aesthetic sport types; but this difference varied across between-person and within-person analyses.
Conclusions: Sports activities appear to be a context where girls experience both the aesthetic and functional dimensions of their bodies. The current study makes a distinct contribution to the literature, because it uniquely compares the bodily experiences of adolescent girls during their participation in sports and non-sports, and further examines the sporting context by comparing aesthetic and non-aesthetic sport types. The results provide points of consideration for those aiming to examine the experiences adolescence gain through their organised leisure participation. It is suggested that future research into the benefits of structured leisure incorporate not only experiences that relate to positive development (such as identity, social skills, leadership skills), but also include body-related experiences in their investigations
Hadronic EDMs, the Weinberg Operator, and Light Gluinos
We re-examine questions concerning the contribution of the three-gluon
Weinberg operator to the electric dipole moment of the neutron, and provide
several QCD sum rule-based arguments that the result is smaller than - but
nevertheless consistent with - estimates which invoke naive dimensional
analysis. We also point out a regime of the MSSM parameter space with light
gluinos for which this operator provides the dominant contribution to the
neutron electric dipole moment due to enhancement via the dimension five color
electric dipole moment of the gluino.Comment: 6 pages, RevTeX, 3 figures; v2: references added; v3: typos
corrected, to appear in Phys. Rev.
The effective action and quantum gauge transformations
The local symmetry transformations of the quantum effective action for
general gauge theory are found. Additional symmetries arise under consideration
of background gauges. Together with "trivial" gauge transformations, vanishing
on mass shell, they can be used for construction simple gauge generators. For
example, for the Yang-Mills theory the classically invariant effective action
is obtained, reproducing DeWitt's result. For rank one theories a natural
generalization is proposed.Comment: Revtex, 11 pages; added reference
Graviton production from extra dimensions
Graviton production due to collapsing extra dimensions is studied. The
momenta lying in the extra dimensions are taken into account. A -dimensional
background is matched to an effectively four-dimensional standard radiation
dominated universe. Using observational constraints on the present
gravitational wave spectrum, a bound on the maximal temperature at the
beginning of the radiation era is derived. This expression depends on the
number of extra dimensions, as well as on the -dimensional Planck mass.
Furthermore, it is found that the extra dimensions have to be large.Comment: LaTeX file, 14 pages, 4 figure
Interaction of Low - Energy Induced Gravity with Quantized Matter and Phase Transition Induced by Curvature
At high energy scale the only quantum effect of any asymptotic free and
asymptotically conformal invariant GUT is the trace anomaly of the
energy-momentum tensor. Anomaly generates the new degree of freedom, that is
propagating conformal factor. At lower energies conformal factor starts to
interact with scalar field because of the violation of conformal invariance. We
estimate the effect of such an interaction and find the running of the
nonminimal coupling from conformal value to . Then we discuss
the possibility of the first order phase transition induced by curvature in a
region close to the stable fixed point and calculate the induced values of
Newtonian and cosmological constants.Comment: 11 pages, LaTex, KEK-TH-397-KEK Preprint 94-3
Particle creation, classicality and related issues in quantum field theory: II. Examples from field theory
We adopt the general formalism, which was developed in Paper I
(arXiv:0708.1233) to analyze the evolution of a quantized time-dependent
oscillator, to address several questions in the context of quantum field theory
in time dependent external backgrounds. In particular, we study the question of
emergence of classicality in terms of the phase space evolution and its
relation to particle production, and clarify some conceptual issues. We
consider a quantized scalar field evolving in a constant electric field and in
FRW spacetimes which illustrate the two extreme cases of late time adiabatic
and highly non-adiabatic evolution. Using the time-dependent generalizations of
various quantities like particle number density, effective Lagrangian etc.
introduced in Paper I, we contrast the evolution in these two limits bringing
out key differences between the Schwinger effect and evolution in the de Sitter
background. Further, our examples suggest that the notion of classicality is
multifaceted and any one single criterion may not have universal applicability.
For example, the peaking of the phase space Wigner distribution on the
classical trajectory \emph{alone} does not imply transition to classical
behavior. An analysis of the behavior of the \emph{classicality parameter},
which was introduced in Paper I, leads to the conclusion that strong particle
production is necessary for the quantum state to become highly correlated in
phase space at late times.Comment: RevTeX 4; 27 pages; 18 figures; second of a series of two papers, the
first being arXiv:0708.1233 [gr-qc]; high resolution figures available from
the authors on reques
Particle creation, classicality and related issues in quantum field theory: I. Formalism and toy models
The quantum theory of a harmonic oscillator with a time dependent frequency
arises in several important physical problems, especially in the study of
quantum field theory in an external background. While the mathematics of this
system is straightforward, several conceptual issues arise in such a study. We
present a general formalism to address some of the conceptual issues like the
emergence of classicality, definition of particle content, back reaction etc.
In particular, we parametrize the wave function in terms of a complex number
(which we call excitation parameter) and express all physically relevant
quantities in terms it. Many of the notions -- like those of particle number
density, effective Lagrangian etc., which are usually defined using asymptotic
in-out states -- are generalized as time-dependent concepts and we show that
these generalized definitions lead to useful and reasonable results. Having
developed the general formalism we apply it to several examples. Exact analytic
expressions are found for a particular toy model and approximate analytic
solutions are obtained in the extreme cases of adiabatic and highly
non-adiabatic evolution. We then work out the exact results numerically for a
variety of models and compare them with the analytic results and
approximations. The formalism is useful in addressing the question of emergence
of classicality of the quantum state, its relation to particle production and
to clarify several conceptual issues related to this. In Paper II
(arXiv:0708.1237), which is a sequel to this, the formalism will be applied to
analyze the corresponding issues in the context of quantum field theory in
background cosmological models and electric fields.Comment: RevTeX 4; 32 pages; 28 figures; first of a series of two papers, the
second being arXiv:0708.1237 [gr-qc]; high resolution figures available from
the authors on reques
How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature?
The coupling of the electromagnetic field to gravity is an age-old problem.
Presently, there is a resurgence of interest in it, mainly for two reasons: (i)
Experimental investigations are under way with ever increasing precision, be it
in the laboratory or by observing outer space. (ii) One desires to test out
alternatives to Einstein's gravitational theory, in particular those of a
gauge-theoretical nature, like Einstein-Cartan theory or metric-affine gravity.
A clean discussion requires a reflection on the foundations of electrodynamics.
If one bases electrodynamics on the conservation laws of electric charge and
magnetic flux, one finds Maxwell's equations expressed in terms of the
excitation H=(D,H) and the field strength F=(E,B) without any intervention of
the metric or the linear connection of spacetime. In other words, there is
still no coupling to gravity. Only the constitutive law H= functional(F)
mediates such a coupling. We discuss the different ways of how metric,
nonmetricity, torsion, and curvature can come into play here. Along the way, we
touch on non-local laws (Mashhoon), non-linear ones (Born-Infeld,
Heisenberg-Euler, Plebanski), linear ones, including the Abelian axion (Ni),
and find a method for deriving the metric from linear electrodynamics (Toupin,
Schoenberg). Finally, we discuss possible non-minimal coupling schemes.Comment: Latex2e, 26 pages. Contribution to "Testing Relativistic Gravity in
Space: Gyroscopes, Clocks, Interferometers ...", Proceedings of the 220th
Heraeus-Seminar, 22 - 27 August 1999 in Bad Honnef, C. Laemmerzahl et al.
(eds.). Springer, Berlin (2000) to be published (Revised version uses
Springer Latex macros; Sec. 6 substantially rewritten; appendices removed;
the list of references updated
Fungi Associated with the Hemlock Woolly Adelgid, Adelges tsugae, and Assessment of Entomopathogenic Isolates for Management
Fungi associated with the hemlock wooly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), were collected throughout the eastern USA and southern China. Twenty fungal genera were identified, as were 79 entomopathogenic isolates, including: Lecanicillium lecanii (Zimmermann) (Hypocreales: Insertae sedis), Isaria farinosa (Holm: Fries.) (Cordycipitaceae), Beauveria bassiana (Balasamo) (Hyphomycetes), and Fusarium spp (Nectriaceae). The remaining fungal genera associated with insect cadavers were similar for both the USA and China collections, although the abundance of Acremonium (Hypocreaceae) was greater in China. The entomopathogenic isolates were assayed for efficacy against Myzus persicae (Sulzer) (Homoptera: Aphididae) and yielded mortality ranging from 3 to 92%. Ten isolates demonstrating the highest efficacy were further assessed for efficacy against field-collected A. tsugae under laboratory conditions. Overall, two B. bassiana, one L. lecanii, and a strain of Metarhizium anisopliae (Metchnikoff) (Hypocreales: Clavicipitaceae), demonstrated significantly higher efficacy against A. tsugae than the others. Isolates were further evaluated for conidial production, germination rate and colony growth at four temperatures representative of field conditions. All isolates were determined to be mesophiles with optimal temperature between 25–30° C. In general, conidial production increased with temperature, though two I. farinosa produced significantly more conidia at cooler temperatures. When efficacy values were compared with conidial production and temperature tolerances, Agricultural Research Service Collection of Entomopathogenic Fungi (ARSEF) 1080, 5170, and 5798 had characteristics comparable to the industrial B. bassiana strain GHA
- …