86 research outputs found

    Thermodynamics of non-local materials: extra fluxes and internal powers

    Full text link
    The most usual formulation of the Laws of Thermodynamics turns out to be suitable for local or simple materials, while for non-local systems there are two different ways: either modify this usual formulation by introducing suitable extra fluxes or express the Laws of Thermodynamics in terms of internal powers directly, as we propose in this paper. The first choice is subject to the criticism that the vector fluxes must be introduced a posteriori in order to obtain the compatibility with the Laws of Thermodynamics. On the contrary, the formulation in terms of internal powers is more general, because it is a priori defined on the basis of the constitutive equations. Besides it allows to highlight, without ambiguity, the contribution of the internal powers in the variation of the thermodynamic potentials. Finally, in this paper, we consider some examples of non-local materials and derive the proper expressions of their internal powers from the power balance laws.Comment: 16 pages, in press on Continuum Mechanics and Thermodynamic

    Distributed optimal control of a nonstandard system of phase field equations

    Get PDF
    We investigate a distributed optimal control problem for a phase field model of Cahn-Hilliard type. The model describes two-species phase segregation on an atomic lattice under the presence of diffusion; it has been recently introduced by the same authors in arXiv:1103.4585v1 [math.AP] and consists of a system of two highly nonlinearly coupled PDEs. For this reason, standard arguments of optimal control theory do not apply directly, although the control constraints and the cost functional are of standard type. We show that the problem admits a solution, and we derive the first-order necessary conditions of optimality.Comment: Key words: distributed optimal control, nonlinear phase field systems, first-order necessary optimality condition

    Coupled Bose-Einstein condensate: Collapse for attractive interaction

    Full text link
    We study the collapse in a coupled Bose-Einstein condensate of two types of bosons 1 and 2 under the action of a trap using the time-dependent Gross-Pitaevskii equation. The system may undergo collapse when one, two or three of the scattering lengths aija_{ij} for scattering of boson ii with jj, i,j=1,2i,j = 1, 2 , are negative representing an attractive interaction. Depending on the parameters of the problem a single or both components of the condensate may experience collapse.Comment: 5 pages and 9 figures, small changes mad

    Velocity–Space Drag and Diffusion in a Model, Two-Dimensional Plasma

    Get PDF
    The quasilinear fluctuation integral is calculated for a two-dimensional, unmagnetized plasma ~composed of charged rods!, and is expressed in terms of Fokker–Planck coefficients. It is found that in two dimensions, the enhanced fluctuations generated by fast electrons lead to anomalously large transport coefficients. In particular, the effect of a small population of fast electrons is only weakly dependent on their density. In three dimensions, the effect of fast electrons is masked by the dominant approximation, but higher-order terms describe processes similar to those in two dimensions, and these terms can become significant for weakly stable plasmas. The differences between two and three dimensions arise from the fact that both emission and damping of plasma waves are retained to lowest order in two dimensions, while the three-dimensional dominant approximation effectively includes only wave emission by test particles. An understanding of the differences between two and three dimensions is crucial to the interpretation of two-dimensional particle simulations

    Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases

    Full text link
    We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas composed of two antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio

    Mean-field analysis of collapsing and exploding Bose-Einstein condensates

    Full text link
    The dynamics of collapsing and exploding trapped Bose-Einstein condensat es caused by a sudden switch of interactions from repulsive to attractive a re studied by numerically integrating the Gross-Pitaevskii equation with atomic loss for an axially symmetric trap. We investigate the decay rate of condensates and the phenomena of bursts and jets of atoms, and compare our results with those of the experiments performed by E. A. Donley {\it et al.} [Nature {\bf 412}, 295 (2001)]. Our study suggests that the condensate decay and the burst production is due to local intermittent implosions in the condensate, and that atomic clouds of bursts and jets are coherent. We also predict nonlinear pattern formation caused by the density instability of attractive condensates.Comment: 7 pages, 8 figures, axi-symmetric results are adde

    Mean-field description of collapsing and exploding Bose-Einstein condensates

    Full text link
    We perform numerical simulation based on the time-dependent mean-field Gross-Pitaevskii equation to understand some aspects of a recent experiment by Donley et al. on the dynamics of collapsing and exploding Bose-Einstein condensates of 85^{85}Rb atoms. They manipulated the atomic interaction by an external magnetic field via a Feshbach resonance, thus changing the repulsive condensate into an attractive one and vice versa. In the actual experiment they changed suddenly the scattering length of atomic interaction from positive to a large negative value on a pre-formed condensate in an axially symmetric trap. Consequently, the condensate collapses and ejects atoms via explosion. We find that the present mean-field analysis can explain some aspects of the dynamics of the collapsing and exploding Bose-Einstein condensates.Comment: 9 Latex pages, 10 ps and eps files, version accepted in Physical Review A, minor changes mad

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Solutions of Gross-Pitaevskii equations beyond the hydrodynamic approximation: Application to the vortex problem

    Full text link
    We develop the multiscale technique to describe excitations of a Bose-Einstein condensate (BEC) whose characteristic scales are comparable with the healing length, thus going beyond the conventional hydrodynamical approximation. As an application of the theory we derive approximate explicit vortex and other solutions. The dynamical stability of the vortex is discussed on the basis of the mathematical framework developed here, the result being that its stability is granted at least up to times of the order of seconds, which is the condensate lifetime. Our analytical results are confirmed by the numerical simulations.Comment: To appear in Phys. Rev.
    corecore