6 research outputs found

    O adsorption and incipient oxidation of the Mg(0001) surface

    Full text link
    First principles density functional calculations are used to study the early oxidation stages of the Mg(0001) surface for oxygen coverages 1/16 <= Theta <= 3 monolayers. It is found that at very low coverages O is incorporated below the topmost Mg layer in tetrahedral sites. At higher oxygen-load the binding in on-surface sites is increased but at one monolayer coverage the on-surface binding is still about 60 meV weaker than for subsurface sites. The subsurface octahedral sites are found to be unfavorable compared to subsurface tetrahedral sites and to on-surface sites. At higher coverages oxygen adsorbs both under the surface and up. Our calculations predict island formation and clustering of incorporated and adsorbed oxygen in agreement with previous calculations. The calculated configurations are compared with the angle-scanned x-ray photoelectron diffraction experiment to determine the geometrical structure of the oxidized Mg(0001) surface.Comment: 10 pages, 5 figure

    Risk profiles and one-year outcomes of patients with newly diagnosed atrial fibrillation in India: Insights from the GARFIELD-AF Registry.

    Get PDF
    BACKGROUND: The Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF) is an ongoing prospective noninterventional registry, which is providing important information on the baseline characteristics, treatment patterns, and 1-year outcomes in patients with newly diagnosed non-valvular atrial fibrillation (NVAF). This report describes data from Indian patients recruited in this registry. METHODS AND RESULTS: A total of 52,014 patients with newly diagnosed AF were enrolled globally; of these, 1388 patients were recruited from 26 sites within India (2012-2016). In India, the mean age was 65.8 years at diagnosis of NVAF. Hypertension was the most prevalent risk factor for AF, present in 68.5% of patients from India and in 76.3% of patients globally (P < 0.001). Diabetes and coronary artery disease (CAD) were prevalent in 36.2% and 28.1% of patients as compared with global prevalence of 22.2% and 21.6%, respectively (P < 0.001 for both). Antiplatelet therapy was the most common antithrombotic treatment in India. With increasing stroke risk, however, patients were more likely to receive oral anticoagulant therapy [mainly vitamin K antagonist (VKA)], but average international normalized ratio (INR) was lower among Indian patients [median INR value 1.6 (interquartile range {IQR}: 1.3-2.3) versus 2.3 (IQR 1.8-2.8) (P < 0.001)]. Compared with other countries, patients from India had markedly higher rates of all-cause mortality [7.68 per 100 person-years (95% confidence interval 6.32-9.35) vs 4.34 (4.16-4.53), P < 0.0001], while rates of stroke/systemic embolism and major bleeding were lower after 1 year of follow-up. CONCLUSION: Compared to previously published registries from India, the GARFIELD-AF registry describes clinical profiles and outcomes in Indian patients with AF of a different etiology. The registry data show that compared to the rest of the world, Indian AF patients are younger in age and have more diabetes and CAD. Patients with a higher stroke risk are more likely to receive anticoagulation therapy with VKA but are underdosed compared with the global average in the GARFIELD-AF. CLINICAL TRIAL REGISTRATION-URL: http://www.clinicaltrials.gov. Unique identifier: NCT01090362

    Passive Films On Stainless-Steels in Aqueous-Media

    No full text
    The purpose of this paper is to provide a syntheses of experimental results regarding films formed on the surface of stainless steels. Such syntheses are attempted for the environments most studied. In each case the overview is presented with reference to the most important papers. Conflicting data are also presented and discussed. Based on the results of the prior studies, a four region model is proposed to describe the surface passive film and its breakdown

    GPCR-CARMA3-NF-kappaB Signaling Axis: A Novel Drug Target for Cancer Therapy

    No full text
    G protein-coupled receptors (GPCRs) play pivotal roles in regulating various cellular functions. It has been well established that GPCR activates NF-κB and aberrant regulation of GPCR-NF-κB signaling axis leads to cancers. However, how GPCRs induce NF-κB activation remains largely elusive. Recently, it has been shown that a novel scaffold protein, CARMA3, is indispensable in GPCR-induced NF-κB activation. In CARMA3-deficient mouse embryonic fibroblast cells, some GPCR ligand-, like lysophosphatidic acid (LPA), induced NF-κB activation is completely abolished. Mechanistically, upon GPCR activation, CARMA3 is linked to the membrane by β-arrestin 2 and phosphorylated by some PKC isoform. Phosphorylation of CARMA3 unfolds its steric structure and recruits its downstream effectors, which in turn activate the IKK complex and NF-κB. Interestingly, GPCR (LPA)-CARMA3-NF-κB signaling axis also exists in ovarian cancer cells, and knockdown of CARMA3 results in attenuation of ovarian cancer migration and invasion, suggesting a novel target for cancer therapy. In this review, we summarize the biology of CARMA3, discuss the GPCR (LPA)-CARMA3-NF-κB signaling axis in ovarian cancer and speculate its potential role in other types of cancers. With a strongly increasing tendency to identify more LPA-like ligands, such as endothelin-1 and angiotensin II, which also activate NF-κB through CARMA3 and contribute to myriad diseases, GPCR- CARMA3-NF-κB signaling axis is emerging as a novel drug target for various types of cancer and other myriad diseases
    corecore