265 research outputs found
Satisfaction among patients attending oncology clinic in a tertiary hospital in South West, Nigeria
Objective: This study determined patients' satisfaction with health care received at the oncology clinic in a tertiary hospital in Lagos, South West of Nigeria.Methods: A descriptive cross-sectional study was carried out among patients attending the oncology clinic in Lagos State University Teaching Hospital, Ikeja, Lagos. A total of 143 patients were recruited using a systematic random sampling and interviewer administered questionnaire was used to collect data. Analysis was done using Statistical Package for Social Sciences (SPSS version 20). Test of significance was performed using a 95% confidence interval and the level of significant set at p = 0.05.Results: More than half 123 (86.1%) reported that they got the kind of service they wanted, 125 (87.5%) reported almost all their needs had been met. Majority (92.3%) of the respondents were satisfied with the level of care received while 2.8% were indifferent and 7 (5%) were dissatisfied. The level of satisfaction was statistically significantly associated with age, marital status, level of education and average monthly income (p<0.05).Conclusion: Majority of patients were satisfied with the health care services at the oncology clinic. Regular satisfaction survey is recommendedKeywords: Patient satisfaction, oncology, tertiary hospita
Multicanonical Multigrid Monte Carlo
To further improve the performance of Monte Carlo simulations of first-order
phase transitions we propose to combine the multicanonical approach with
multigrid techniques. We report tests of this proposition for the
-dimensional field theory in two different situations. First, we
study quantum tunneling for in the continuum limit, and second, we
investigate first-order phase transitions for in the infinite volume
limit. Compared with standard multicanonical simulations we obtain improvement
factors of several resp. of about one order of magnitude.Comment: 12 pages LaTex, 1 PS figure appended. FU-Berlin preprint FUB-HEP 9/9
Psychosocial functioning in adolescents with and without borderline personality disorder.
Little is known about the psychosocial functioning of adolescents with borderline personality disorder (BPD). The main objective of this paper is to compare the psychosocial functioning of a group of adolescents with BPD to a group of psychiatrically healthy adolescents.
The present cross-sectional study included 104 adolescent inpatients with BPD, compared with 60 age-matched psychiatrically healthy comparison subjects. All participants were rigorously diagnosed using three semi-structured interviews: the Structured Clinical Interview for DSM-IV Childhood Diagnoses, the Revised Diagnostic Interview for Borderlines and the Childhood Interview for DSM-IV Borderline Personality. All subjects were also interviewed using the adolescent version of the Background Information Schedule to assess multiple facets of psychosocial functioning.
Adolescents with BPD rated their relationships with their parents as significantly less positive, were more likely to date, but spent more time alone than their healthy counterparts. In addition, adolescents with BPD reported significantly more problems at work and school (i.e. lower frequency of having a good work or school history, higher frequency of being suspended or expelled from school) and significantly lower rates of participation in extra-curricular activities than their healthy counterparts.
Taken together, the results of this study suggest that adolescents with BPD are more impaired in both the social and vocational areas of functioning than psychiatrically healthy comparison subjects. They might also suggest that an overlooked area of strength concerns their relationships with peers. Copyright © 2017 John Wiley & Sons, Ltd
Non-relativistic effective theory of dark matter direct detection
Dark matter direct detection searches for signals coming from dark matter
scattering against nuclei at a very low recoil energy scale ~ 10 keV. In this
paper, a simple non-relativistic effective theory is constructed to describe
interactions between dark matter and nuclei without referring to any underlying
high energy models. It contains the minimal set of operators that will be
tested by direct detection. The effective theory approach highlights the set of
distinguishable recoil spectra that could arise from different theoretical
models. If dark matter is discovered in the near future in direct detection
experiments, a measurement of the shape of the recoil spectrum will provide
valuable information on the underlying dynamics. We bound the coefficients of
the operators in our non-relativistic effective theory by the null results of
current dark matter direct detection experiments. We also discuss the mapping
between the non-relativistic effective theory and field theory models or
operators, including aspects of the matching of quark and gluon operators to
nuclear form factors.Comment: 35 pages, 3 figures, Appendix C.3 revised, acknowledgments and
references adde
Dynamics of trapped bright solitons in the presence of localized inhomogeneities
We examine the dynamics of a bright solitary wave in the presence of a
repulsive or attractive localized ``impurity'' in Bose-Einstein condensates
(BECs). We study the generation and stability of a pair of steady states in the
vicinity of the impurity as the impurity strength is varied. These two new
steady states, one stable and one unstable, disappear through a saddle-node
bifurcation as the strength of the impurity is decreased. The dynamics of the
soliton is also examined in all the cases (including cases where the soliton is
offset from one of the relevant fixed points). The numerical results are
corroborated by theoretical calculations which are in very good agreement with
the numerical findings.Comment: 8 pages, 5 composite figures with low res (for high res pics please
go to http://www.rohan.sdsu.edu/~rcarrete/ [Publications] [Publication#41
Fundamental constants and tests of general relativity - Theoretical and cosmological considerations
The tests of the constancy of the fundamental constants are tests of the
local position invariance and thus of the equivalence principle. We summarize
the various constraints that have been obtained and then describe the
connection between varying constants and extensions of general relativity. To
finish, we discuss the link with cosmology, and more particularly with the
acceleration of the Universe. We take the opportunity to summarize various
possibilities to test general relativity (but also the Copernican principle) on
cosmological scales.Comment: Proceedings of the workshop ``The nature of gravity, confronting
theory and experiment in space'', ISSI, Bern, october 200
Interaction of N solitons in the massive Thirring model and optical gap system: the Complex Toda Chain Model
Using the Karpman-Solov''ev quasiparticle approach for soliton-soliton
interaction I show that the train propagation of N well separated solitons of
the massive Thirring model is described by the complex Toda chain with N nodes.
For the optical gap system a generalised (non-integrable) complex Toda chain is
derived for description of the train propagation of well separated gap
solitons. These results are in favor of the recently proposed conjecture of
universality of the complex Toda chain.Comment: RevTex, 23 pages, no figures. Submitted to Physical Review
A CsI(Tl) Scintillating Crystal Detector for the Studies of Low Energy Neutrino Interactions
Scintillating crystal detector may offer some potential advantages in the
low-energy, low-background experiments. A 500 kg CsI(Tl) detector to be placed
near the core of Nuclear Power Station II in Taiwan is being constructed for
the studies of electron-neutrino scatterings and other keV-MeV range neutrino
interactions. The motivations of this detector approach, the physics to be
addressed, the basic experimental design, and the characteristic performance of
prototype modules are described. The expected background channels and their
experimental handles are discussed.Comment: 34 pages, 11 figures, submitted to Nucl. Instrum. Method
Menus for Feeding Black Holes
Black holes are the ultimate prisons of the Universe, regions of spacetime
where the enormous gravity prohibits matter or even light to escape to
infinity. Yet, matter falling toward the black holes may shine spectacularly,
generating the strongest source of radiation. These sources provide us with
astrophysical laboratories of extreme physical conditions that cannot be
realized on Earth. This chapter offers a review of the basic menus for feeding
matter onto black holes and discusses their observational implications.Comment: 27 pages. Accepted for publication in Space Science Reviews. Also to
appear in hard cover in the Space Sciences Series of ISSI "The Physics of
Accretion onto Black Holes" (Springer Publisher
Recent developments in planet migration theory
Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent
protoplanetary disc. One of the key quantities to assess the migration of
embedded planets is the tidal torque between the disc and planet, which has two
components: the Lindblad torque and the corotation torque. We review the latest
results on both torque components for planets on circular orbits, with a
special emphasis on the various processes that give rise to additional, large
components of the corotation torque, and those contributing to the saturation
of this torque. These additional components of the corotation torque could help
address the shortcomings that have recently been exposed by models of planet
population syntheses. We also review recent results concerning the migration of
giant planets that carve gaps in the disc (type II migration) and the migration
of sub-giant planets that open partial gaps in massive discs (type III
migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal
effects in Astronomy and Astrophysics", Lecture Notes in Physic
- …