11,283 research outputs found

    Three-dimensional quasi-Tonks gas in a harmonic trap

    Full text link
    We analyze the macroscopic dynamics of a Bose gas in a harmonic trap with a superimposed two-dimensional optical lattice, assuming a weak coupling between different lattice sites. We consider the situation in which the local chemical potential at each lattice site can be considered as that provided by the Lieb-Liniger solution. Due to the weak coupling between sites and the form of the chemical potential, the three-dimensional ground-state density profile and the excitation spectrum acquire remarkable properties different from both 1D and 3D gases. We call this system a quasi-Tonks gas. We discuss the range of applicability of this regime, as well as realistic experimental situations where it can be observed.Comment: 4 pages, 3 figures, misprints correcte

    Mesothelial reaction to asbestos and other irritants after intraperitoneal injection

    Get PDF
    ArticleThe original publication is available from http://www.samj.org.zaBibliographyTen groups of rats were injected intraperitoneally with one of the following suspensions; standard reference crocidolite; acid treated crocidolite; crocidolite + iron oxide; crocidolite + silica; iron oxide; silica; long fiber crocidolite; short fiber crocidolite; long fiber glass and short fiber glass. Two rats from each group were killed at 45, 90, 150, 240 and 330 days respectively, and the pathology induced by the different suspensions was studied histologically at each time interval. No evidence in support of the chemical induction theory of mechanical irritation theory in the pathogenesis of peritoneal mesotheliomas could be found, although all the suspensions except iron oxide caused a reactive mesothelium.Publishers' versio

    Photonic Crystal Nanobeam Cavity Strongly Coupled to the Feeding Waveguide

    Full text link
    A deterministic design of an ultrahigh Q, wavelength scale mode volume photonic crystal nanobeam cavity is proposed and experimentally demonstrated. Using this approach, cavities with Q>10^6 and on-resonance transmission T>90% are designed. The devices fabricated in Si and capped with low-index polymer, have Q=80,000 and T=73%. This is, to the best of our knowledge, the highest transmission measured in deterministically designed, wavelength scale high Q cavities

    Validation of a new tribological test bench for lightweight hydraulic components

    Get PDF
    The presented paper deals with tribological contacts in “lightweight” hydraulic pumps. One approach for the mass reduction of hydraulic systems is the material substitution. According to this strategy, steel-components are replaced with polymeric material or hybrid design components. The consequences of this material substitution are tribological changes of the contact pairings. Hence, there is research necessary on the tribological behavior of the specific contacts between polymers or hybrid components. For the characterization of these tribological contacts, a test bench was developed. With this test bench the analysis of the tribological behavior of the contact between cylinder and control plate in the axial piston variable pump is possible. A description of the modeling and a validation of the test bench are presented in the this paper. The result is, the test bench indicates good measurement result quality. In addition a cooling system is necessary to guarantee a constant test fluid temperature

    Journal Staff

    Get PDF
    This book constitutes the refereed proceedings of the 18th Scandinavian Conference on Image Analysis, SCIA 2013, held in Espoo, Finland, in June 2013. The 67 revised full papers presented were carefully reviewed and selected from 132 submissions. The papers are organized in topical sections on feature extraction and segmentation, pattern recognition and machine learning, medical and biomedical image analysis, faces and gestures, object and scene recognition, matching, registration, and alignment, 3D vision, color and multispectral image analysis, motion analysis, systems and applications, human-centered computing, and video and multimedia analysis

    Indirect Self-Modulation Instability Measurement Concept for the AWAKE Proton Beam

    Get PDF
    AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment, is a proof-of-principle R&D experiment at CERN using a 400 GeV/c proton beam from the CERN SPS (longitudinal beam size sigma_z = 12 cm) which will be sent into a 10 m long plasma section with a nominal density of approx. 7x10^14 atoms/cm3 (plasma wavelength lambda_p = 1.2mm). In this paper we show that by measuring the time integrated transverse profile of the proton bunch at two locations downstream of the AWAKE plasma, information about the occurrence of the self-modulation instability (SMI) can be inferred. In particular we show that measuring defocused protons with an angle of 1 mrad corresponds to having electric fields in the order of GV/m and fully developed self-modulation of the proton bunch. Additionally, by measuring the defocused beam edge of the self-modulated bunch, information about the growth rate of the instability can be extracted. If hosing instability occurs, it could be detected by measuring a non-uniform defocused beam shape with changing radius. Using a 1 mm thick Chromox scintillation screen for imaging of the self-modulated proton bunch, an edge resolution of 0.6 mm and hence a SMI saturation point resolution of 1.2 m can be achieved.Comment: 4 pages, 4 figures, EAAC conference proceeding

    Multidimensional solitons in periodic potentials

    Full text link
    The existence of stable solitons in two- and three-dimensional (2D and 3D) media governed by the self-focusing cubic nonlinear Schr\"{o}dinger equation with a periodic potential is demonstrated by means of the variational approximation (VA) and in direct simulations. The potential stabilizes the solitons against collapse. Direct physical realizations are a Bose-Einstein condensate (BEC) trapped in an optical lattice, and a light beam in a bulk Kerr medium of a photonic-crystal type. In the 2D case, the creation of the soliton in a weak lattice potential is possible if the norm of the field (number of atoms in BEC, or optical power in the Kerr medium) exceeds a threshold value (which is smaller than the critical norm leading to collapse). Both "single-cell" and "multi-cell" solitons are found, which occupy, respectively, one or several cells of the periodic potential, depending on the soliton's norm. Solitons of the former type and their stability are well predicted by VA. Stable 2D vortex solitons are found too.Comment: 13 pages, 3 figures, Europhys. Lett., in pres
    • …
    corecore