164 research outputs found

    Baikal-GVD: status and prospects

    Full text link
    Baikal-GVD is a next generation, kilometer-scale neutrino telescope under construction in Lake Baikal. It is designed to detect astrophysical neutrino fluxes at energies from a few TeV up to 100 PeV. GVD is formed by multi-megaton subarrays (clusters). The array construction started in 2015 by deployment of a reduced-size demonstration cluster named "Dubna". The first cluster in its baseline configuration was deployed in 2016, the second in 2017 and the third in 2018. The full scale GVD will be an array of ~10000 light sensors with an instrumented volume of about 2 cubic km. The first phase (GVD-1) is planned to be completed by 2020-2021. It will comprise 8 clusters with 2304 light sensors in total. We describe the design of Baikal-GVD and present selected results obtained in 2015-2017.Comment: 9 pages, 8 figures. Conference proceedings for QUARKS201

    The Lake Baikal neutrino experiment: selected results

    Get PDF
    We review the present status of the lake Baikal Neutrino Experiment and present selected physical results gained with the consequetive stages of the stepwise increasing detector: from NT-36 to NT-96. Results cover atmospheric muons, neutrino events, very high energy neutrinos, search for neutrino events from WIMP annihilation, search for magnetic monopoles and environmental studies. We also describe an air Cherenkov array developed for the study of angular resolution of NT-200.Comment: 25 pages, 12 figures. To appear in the Procrrdings of International Conference on Non-Accelerator New Physics, June 28 - July 3, 1999, Dubna, Russi

    Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

    Full text link
    The paper is a script of a lecture given at the ISAPP-Baikal summer school in 2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) facility including historical introduction, description of existing and future setups, and outreach and open data activities.Comment: Lectures given at the ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers, 12-21 July 2018, Bol'shie Koty, Russi

    Simultaneous measurements of water optical properties by AC9 transmissometer and ASP-15 Inherent Optical Properties meter in Lake Baikal

    Get PDF
    Measurements of optical properties in media enclosing Cherenkov neutrino telescopes are important not only at the moment of the selection of an adequate site, but also for the continuous characterization of the medium as a function of time. Over the two last decades, the Baikal collaboration has been measuring the optical properties of the deep water in Lake Baikal (Siberia) where, since April 1998, the neutrino telescope NT-200 is in operation. Measurements have been made with custom devices. The NEMO Collaboration, aiming at the construction of a km3 Cherenkov neutrino detector in the Mediterranean Sea, has developed an experimental setup for the measurement of oceanographic and optical properties of deep sea water. This setup is based on a commercial transmissometer. During a joint campaign of the two collaborations in March and April 2001, light absorption, scattering and attenuation in water have been measured. The results are compatible with previous ones reported by the Baikal Collaboration and show convincing agreement between the two experimental techniques.Comment: 16 pages, submitted to NIM-
    corecore