28 research outputs found

    Regional distribution and properties of [3H]MK-801 binding sites determined by quantitative autoradiography in rat brain

    Full text link
    [3H]MK-801 binding in rat brain was characterized using a quantitative autoradiographic binding assay. [3H]MK-801 binding (5 nM) reached equilibrium by 120 min at 23[deg]C. [3H]MK-801 appeared to label a single high affinity site with an affinity constant of approximately 11 nM. [3H]MK-801 binding was heterogeneously distributed throughout the brain with the following order of binding densities: hippocampal formation > cortical areas > striatum > thalamus.Competitive antagonists, -2-amino-5-phosphonopentanoic acid, -2-amino-7-phosphonoheptanoic acid, 3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid, and cis-4-phosphonomethyl-2-piperidine carboxylic acid, inhibited [3H]MK-801 binding. Glycine antagonists, 7-chlorokynurenic acid and kynurenic acid, also inhibited [3H]MK-801 binding. Furthermore, the inhibition of [3H]MK-801 binding by the quinoxalinedione compounds 6-cyano-7-nitroquinoxaline-2,3-dione and 6,7-dinitroquinoxaline-2, 3-dione was reversed by glycine. [3H]MK-801 binding was also inhibited by zinc ions. [3H]MK-801 binding was enhanced by glycine or .These results demonstrate that [3H]MK-801 can be used in a quantitative autoradiographic assay as a functional probe for the receptor complex.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29627/1/0000716.pd

    Excitatory and inhibitory amino acid binding sites in human dentate nucleus

    Full text link
    Autoradiography of excitatory and inhibitory amino acid binding sites in human dentate nuclei indicated virtually no binding to N-methyl-d-aspartate (NMDA) or [gamma]-aminobutyric acidB (GABAB) binding sites, and a low density of kainate binding sites. [alpha]-Amino-3-hydroxy-5-methylisoxazole-4-propionic acid, metabotropic-quisqualate, benzodiazepine, and [gamma]-aminobutyric acidA (GABAA) binding sites were present in moderate abundance. Our NMDA results differ from those found previously in rodents. GABAA receptors are probably the primary mediators of inhibitory neurotransmission and [alpha]-amino-3-hydroxy-5-methylisoxazole-4-propionic acid and metabotropic-quisqualate receptors are probably the primary mediators of excitatory neurotransmission within the human deep cerebellar nuclei.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29126/1/0000165.pd

    2,4,5-Trihydroxyphenylalanine (6-hydroxy-DOPA) displaces [3H]AMPA binding in rat striatum

    Full text link
    Excitatory amino acid (EAA) receptor-mediated events have recently been implicated in dopaminergic mechanisms of neurotoxicity. 2,4,5-Trihydroxyphenylalanine (6-hydroxy-DOPA, TOPA), the ortho-hydroxylated derivative of the dopamine precursor 2,4-dihydroxyphenylalanine (-DOPA), has recently been reported to have neurotoxic properties which are blocked by CNQX, a specific antagonist of the AMPA class of (non-NMDA) EAA receptors. We report here that 6-hydroxy-DOPA is a selective displacer of [3H]AMPA binding in rodent brain. 6-Hydroxy-DOPA was as potent as kainate in displacing [3H]AMPA binding, with an IC50 value of 32 [mu]M. Ineffective displacers of [3H]AMPA binding included dopamine, 6-hydroxydopamine, -DOPA, -DOPA, carbidopa, DOPAC, [beta]-methylamino--alanine, 2,4-dihydroxyphenylacetyl--asparagine, homogentisic acid, 2,4-dihydroxyphenylacetic acid, amantadine, and threo-DOPS. 6-Hydroxy-DOPA (100 [mu]M) also displaced 20% of [3H]kainate binding, but did not displace binding to NMDA, phencyclidine (PCP), or dopaminergic (D1 and D2) receptors. These data raise the possibility that 6-hydroxy-DOPA or another abnormal metabolite of -DOPA could act as an excitotoxic agent via action at AMPA receptors. Given that non-NMDA receptors are postulated to play a role in neurotoxic events, these data provide an additional mechanism via which EAA receptor-mediated events could produce neurodegeneration in areas of brain with dopaminergic innervation.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29079/1/0000114.pd

    Candidate Risk Factors and Mechanisms for Tolvaptan-Induced Liver Injury Are Identified Using a Collaborative Cross Approach

    Get PDF
    Clinical trials of tolvaptan showed it to be a promising candidate for the treatment of Autosomal Dominant Polycystic Kidney Disease (ADPKD) but also revealed potential for idiosyncratic drug-induced liver injury (DILI) in this patient population. To identify risk factors and mechanisms underlying tolvaptan DILI, 8 mice in each of 45 strains of the genetically diverse Collaborative Cross (CC) mouse population were treated with a single oral dose of either tolvaptan or vehicle. Significant elevations in plasma alanine aminotransferase (ALT) were observed in tolvaptan-treated animals in 3 of the 45 strains. Genetic mapping coupled with transcriptomic analysis in the liver was used to identify several candidate susceptibility genes including epoxide hydrolase 2, interferon regulatory factor 3, and mitochondrial fission factor. Gene pathway analysis revealed that oxidative stress and immune response pathways were activated in response to tolvaptan treatment across all strains, but genes involved in regulation of bile acid homeostasis were most associated with tolvaptan-induced elevations in ALT. Secretory leukocyte peptidase inhibitor (Slpi) mRNA was also induced in the susceptible strains and was associated with increased plasma levels of Slpi protein, suggesting a potential serum marker for DILI susceptibility. In summary, tolvaptan induced signs of oxidative stress, mitochondrial dysfunction, and innate immune response in all strains, but variation in bile acid homeostasis was most associated with susceptibility to the liver response. This CC study has indicated potential mechanisms underlying tolvaptan DILI and biomarkers of susceptibility that may be useful in managing the risk of DILI in ADPKD patients

    Application of a Mechanistic Model to Evaluate Putative Mechanisms of Tolvaptan Drug-Induced Liver Injury and Identify Patient Susceptibility Factors

    Get PDF
    Tolvaptan is a selective vasopressin V2 receptor antagonist, approved in several countries for the treatment of hyponatremia and autosomal dominant polycystic kidney disease (ADPKD). No liver injury has been observed with tolvaptan treatment in healthy subjects and in non-ADPKD indications, but ADPKD clinical trials showed evidence of drug-induced liver injury (DILI). Although all DILI events resolved, additional monitoring in tolvaptan-treated ADPKD patients is required. In vitro assays identified alterations in bile acid disposition and inhibition of mitochondrial respiration as potential mechanisms underlying tolvaptan hepatotoxicity. This report details the application of DILIsym software to determine whether these mechanisms could account for the liver safety profile of tolvaptan observed in ADPKD clinical trials. DILIsym simulations included physiologically based pharmacokinetic estimates of hepatic exposure for tolvaptan and2 metabolites, and their effects on hepatocyte bile acid transporters and mitochondrial respiration. The frequency of predicted alanine aminotransferase (ALT) elevations, following simulated 90/30 mg split daily dosing, was 7.9% compared with clinical observations of 4.4% in ADPKD trials. Toxicity was multifactorial as inhibition of bile acid transporters and mitochondrial respiration contributed to the simulated DILI. Furthermore, simulation analysis identified both pre-treatment risk factors and on-treatment biomarkers predictive of simulated DILI. The simulations demonstrated that in vivo hepatic exposure to tolvaptan and the DM-4103 metabolite, combined with these 2 mechanisms of toxicity, were sufficient to account for the initiation of tolvaptan-mediated DILI. Identification of putative risk-factors and potential novel biomarkers provided insight for the development of mechanism-based tolvaptan risk-mitigation strategies

    The Amino-Terminus of Nitric Oxide Sensitive Guanylyl Cyclase α1 Does Not Affect Dimerization but Influences Subcellular Localization

    Get PDF
    BACKGROUND: Nitric oxide sensitive guanylyl cyclase (NOsGC) is a heterodimeric enzyme formed by an α- and a β₁-subunit. A splice variant (C-α₁) of the α₁-subunit, lacking at least the first 236 amino acids has been described by Sharina et al. 2008 and has been shown to be expressed in differentiating human embryonic cells. Wagner et al. 2005 have shown that the amino acids 61-128 of the α₁-subunit are mandatory for quantitative heterodimerization implying that the C-α₁-splice variant should lose its capacity to dimerize quantitatively. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we demonstrate preserved quantitative dimerization of the C-α₁-splice by co-purification with the β₁-subunit. In addition we used fluorescence resonance energy transfer (FRET) based on fluorescence lifetime imaging (FLIM) using fusion proteins of the β₁-subunit and the α₁-subunit or the C-α₁ variant with ECFP or EYFP. Analysis of the respective combinations in HEK-293 cells showed that the fluorescence lifetime was significantly shorter (≈0.3 ns) for α₁/β₁ and C-α₁/β₁ than the negative control. In addition we show that lack of the amino-terminus in the α₁ splice variant directs it to a more oxidized subcellular compartment. CONCLUSIONS/SIGNIFICANCE: We conclude that the amino-terminus of the α₁-subunit is dispensable for dimerization in-vivo and ex-vivo, but influences the subcellular trafficking

    The ancient history of the structure of ribonuclease P and the early origins of Archaea

    Get PDF

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore