907 research outputs found

    Eclipsing Binaries in Open Clusters

    Get PDF
    Detached eclipsing binaries are very useful objects for calibrating theoretical stellar models and checking their predictions. Detached eclipsing binaries in open clusters are particularly important because of the additional constraints on their age and chemical composition from their membership of the cluster. I compile a list containing absolute parameters of well-studied eclipsing binaries in open clusters, and present new observational data on the B-type systems V1481 Cyg and V2263 Cyg which are members of the young open cluster NGC 7128.Comment: 4 pages, 2 colour figures. Poster presentation for IAUS 240 (Binary Stars as Critical Tools and Tests in Contemporary Astrophysics), Prague, August 2006. The poster itself can be dowloaded in ppt and pdf versions from http://www.astro.keele.ac.uk/~jkt/pubs.htm

    High-precision photometry by telescope defocussing. III. The transiting planetary system WASP-2

    Full text link
    We present high-precision photometry of three transits of the extrasolar planetary system WASP-2, obtained by defocussing the telescope, and achieving point-to-point scatters of between 0.42 and 0.73 mmag. These data are modelled using the JKTEBOP code, and taking into account the light from the recently-discovered faint star close to the system. The physical properties of the WASP-2 system are derived using tabulated predictions from five different sets of stellar evolutionary models, allowing both statistical and systematic errorbars to be specified. We find the mass and radius of the planet to be M_b = 0.847 +/- 0.038 +/- 0.024 Mjup and R_b = 1.044 +/- 0.029 +/- 0.015 Rjup. It has a low equilibrium temperature of 1280 +/- 21 K, in agreement with a recent finding that it does not have an atmospheric temperature inversion. The first of our transit datasets has a scatter of only 0.42 mmag with respect to the best-fitting light curve model, which to our knowledge is a record for ground-based observations of a transiting extrasolar planet.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 10 table

    Multilevel convergence analysis of multigrid-reduction-in-time

    Full text link
    This paper presents a multilevel convergence framework for multigrid-reduction-in-time (MGRIT) as a generalization of previous two-grid estimates. The framework provides a priori upper bounds on the convergence of MGRIT V- and F-cycles, with different relaxation schemes, by deriving the respective residual and error propagation operators. The residual and error operators are functions of the time stepping operator, analyzed directly and bounded in norm, both numerically and analytically. We present various upper bounds of different computational cost and varying sharpness. These upper bounds are complemented by proposing analytic formulae for the approximate convergence factor of V-cycle algorithms that take the number of fine grid time points, the temporal coarsening factors, and the eigenvalues of the time stepping operator as parameters. The paper concludes with supporting numerical investigations of parabolic (anisotropic diffusion) and hyperbolic (wave equation) model problems. We assess the sharpness of the bounds and the quality of the approximate convergence factors. Observations from these numerical investigations demonstrate the value of the proposed multilevel convergence framework for estimating MGRIT convergence a priori and for the design of a convergent algorithm. We further highlight that observations in the literature are captured by the theory, including that two-level Parareal and multilevel MGRIT with F-relaxation do not yield scalable algorithms and the benefit of a stronger relaxation scheme. An important observation is that with increasing numbers of levels MGRIT convergence deteriorates for the hyperbolic model problem, while constant convergence factors can be achieved for the diffusion equation. The theory also indicates that L-stable Runge-Kutta schemes are more amendable to multilevel parallel-in-time integration with MGRIT than A-stable Runge-Kutta schemes.Comment: 26 pages; 17 pages Supplementary Material

    Space-Time Block Preconditioning for Incompressible Resistive Magnetohydrodynamics

    Full text link
    This work develops a novel all-at-once space-time preconditioning approach for resistive magnetohydrodynamics (MHD), with a focus on model problems targeting fusion reactor design. We consider parallel-in-time due to the long time domains required to capture the physics of interest, as well as the complexity of the underlying system and thereby computational cost of long-time integration. To ameliorate this cost by using many processors, we thus develop a novel approach to solving the whole space-time system that is parallelizable in both space and time. We develop a space-time block preconditioning for resistive MHD, following the space-time block preconditioning concept first introduced by Danieli et al. in 2022 for incompressible flow, where an effective preconditioner for classic sequential time-stepping is extended to the space-time setting. The starting point for our derivation is the continuous Schur complement preconditioner by Cyr et al. in 2021, which we proceed to generalise in order to produce, to our knowledge, the first space-time block preconditioning approach for the challenging equations governing incompressible resistive MHD. The numerical results are promising for the model problems of island coalescence and tearing mode, with the overhead computational cost associated with space-time preconditioning versus sequential time-stepping being modest and primarily in the range of 2x-5x, which is low for parallel-in-time schemes in general. Additionally, the scaling results for inner (linear) and outer (nonlinear) iterations are flat in the case of fixed time-step size and only grow very slowly in the case of time-step refinement.Comment: 25 pages, 4 figures, 3 table

    Eclipsing binaries in open clusters - III. V621 Per in χ Persei

    Get PDF
    V621 Persei is a detached eclipsing binary in the open cluster χ Persei, which is composed of an early B-type giant star and a main-sequence secondary component. From high-resolution spectroscopic observations and radial velocities from the literature, we determine the orbital period to be 25.5 d and the primary velocity semi-amplitude to be K= 64.5 ± 0.4 km s−1. No trace of the secondary star has been found in the spectrum. We solve the discovery light curves of this totally eclipsing binary and find that the surface gravity of the secondary star is log gB= 4.244 ± 0.054. We compare the absolute masses and radii of the two stars in the mass-radius diagram, for different possible values of the primary surface gravity, with the predictions of stellar models. We find that log gA≈ 3.55, in agreement with values found from fitting Balmer lines with synthetic profiles. The expected masses of the two stars are 12 and 6 M⊙ and the expected radii are 10 and 3 R⊙. The primary component is near the blue loop stage in its evolutio
    • …
    corecore