224 research outputs found
Cooperation through Coordination in Two Stages
This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordEfficient cooperation often requires coordination, such that exactly one of two players takes
an available action. If the decisions whether to pursue the action are made simultaneously,
then neither or both may acquiesce leading to an inefficient outcome. However,
inefficiency may be reduced if players move sequentially. We test this experimentally by
introducing repeated two-stage versions of such a game where the action is individually
profitable. In one version, players may wait in the first stage to see what their partner did
and then coordinate in the second stage. In another version, sequential decision-making is
imposed by assigning one player to move in stage one and the other in stage two. Although
there are fewer cooperative decisions in the two-stage treatments, we show that overall
subjects coordinate better on efficient cooperation and on avoiding both acquiescing. Yet,
only some pairs actually achieve higher profits, while the least cooperative pairs do worse
in the two-stage games than their single-stage counterparts. For these, rather than
facilitating coordination, the additional stage invites unsuccessful attempts to disguise
uncooperative play, which are met with punishment
On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants
We investigate the occurrence of crystalline silicates in oxygen-rich evolved
stars across a range of metallicities and mass-loss rates. It has been
suggested that the crystalline silicate feature strength increases with
increasing mass-loss rate, implying a correlation between lattice structure and
wind density. To test this, we analyse Spitzer IRS and Infrared Space
Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98
red supergiants in the Milky Way, the Large and Small Magellanic Clouds and
Galactic globular clusters. These encompass a range of spectral morphologies
from the spectrally-rich which exhibit a wealth of crystalline and amorphous
silicate features to 'naked' (dust-free) stars. We combine spectroscopic and
photometric observations with the GRAMS grid of radiative transfer models to
derive (dust) mass-loss rates and temperature. We then measure the strength of
the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline
silicates in stars with dust mass-loss rates which span over 3 dex, down to
rates of ~10^-9 solar masses/year. Detections of crystalline silicates are more
prevalent in higher mass-loss rate objects, though the highest mass-loss rate
objects do not show the 23-micron feature, possibly due to the low temperature
of the forsterite grains or it may indicate that the 23-micron band is going
into absorption due to high column density. Furthermore, we detect a change in
the crystalline silicate mineralogy with metallicity, with enstatite seen
increasingly at low metallicity.Comment: Accepted for publication in MNRAS, 24 pages, 16 figure
Sequential and Spontaneous Star Formation Around the Mid-Infrared Halo HII Region KR 140
We use 2MASS and MSX infrared observations, along with new molecular line
(CO) observations, to examine the distribution of young stellar objects (YSOs)
in the molecular cloud surrounding the halo HII region KR 140 in order to
determine if the ongoing star-formation activity in this region is dominated by
sequential star formation within the photodissociation region (PDR) surrounding
the HII region. We find that KR 140 has an extensive population of YSOs that
have spontaneously formed due to processes not related to the expansion of the
HII region. Much of the YSO population in the molecular cloud is concentrated
along a dense filamentary molecular structure, traced by C18O, that has not
been erased by the formation of the exciting O star. Some of the previously
observed submillimetre clumps surrounding the HII region are shown to be sites
of recent intermediate and low-mass star formation while other massive starless
clumps clearly associated with the PDR may be the next sites of sequential star
formation.Comment: Accepted for publication in MNRAS, 8 pages, 10 figure
Dust Dynamics in Compressible MHD Turbulence
We calculate the relative grain-grain motions arising from interstellar
magnetohydrodynamic (MHD) turbulence. The MHD turbulence includes both fluid
motions and magnetic fluctuations. While the fluid motions accelerate grains
through hydro-drag, the electromagnetic fluctuations accelerate grains through
resonant interactions. We consider both incompressive (Alfv\'{e}n) and
compressive (fast and slow) MHD modes and use descriptions of MHD turbulence
obtained in Cho & Lazarian (2002). Calculations of grain relative motion are
made for realistic grain charging and interstellar turbulence that is
consistent with the velocity dispersions observed in diffuse gas, including
cutoff of the turbulence from various damping processes. We show that fast
modes dominate grain acceleration, and can drive grains to supersonic
velocities. Grains are also scattered by gyroresonance interactions, but the
scattering is less important than acceleration for grains moving with
sub-Alfv\'{e}nic velocities. Since the grains are preferentially accelerated
with large pitch angles, the supersonic grains will be aligned with long axes
perpendicular to the magnetic field. We compare grain velocities arising from
MHD turbulence with those arising from photoelectric emission, radiation
pressure and H thrust. We show that for typical interstellar conditions
turbulence should prevent these mechanisms from segregating small and large
grains. Finally, gyroresonant acceleration is bound to preaccelerate grains
that are further accelerated in shocks. Grain-grain collisions in the shock may
then contribute to the overabundance of refractory elements in the composition
of galactic cosmic rays.Comment: 15 pages, 17 figure
Chemistry and Dynamics in Pre-Protostellar Cores
We have compared molecular line emission to dust continuum emission and
modeled molecular lines using Monte Carlo simulations in order to study the
depletion of molecules and the ionization fraction in three preprotostellar
cores, L1512, L1544, and L1689B. L1512 is much less dense than L1544 and
L1689B, which have similar density structures. L1689B has a different
environment from those of L1512 and L1544. We used density and temperature
profiles, calculated by modeling dust continuum emission in the submillimeter,
for modeling molecular line profiles. In addition, we have used molecular line
profiles and maps observed in several different molecules toward the three
cores. We find a considerable diversity in chemical state among the three
cores. The molecules include those sensitive to different timescales of
chemical evolution such as CCS, the isotopes of CO and HCO+, DCO+, and N2H+.
The CO molecule is significantly depleted in L1512 and L1544, but not in
L1689B. CCS may be in the second enhancement of its abundance in L1512 and
L1544 because of the significant depletion of CO molecules. N2H+ might already
start to be depleted in L1512, but it traces very well the distribution of dust
emission in L1544. On the other hand, L1689B may be so young that N2H+ has not
reached its maximum yet. The ionization fraction has been calculated using
H13CO+ and DCO+. This study suggests that chemical evolution depends on the
absolute timescale during which a core stays in a given environment as well as
its density structure.Comment: 33 pages, 12 figures, accepted to Ap
On the Influence of Uncertainties in Chemical Reaction Rates on Results of the Astrochemical Modelling
With the chemical reaction rate database UMIST95 (Millar et al. 1997) we
analyze how uncertainties in rate constants of gas-phase chemical reactions
influence the modelling of molecular abundances in the interstellar medium.
Random variations are introduced into the rate constants to estimate the
scatter in theoretical abundances. Calculations are performed for dark and
translucent molecular clouds where gas phase chemistry is adequate. Similar
approach was used by Pineau des Forets & Roueff (2000) for the study of
chemical bistability. All the species are divided into 6 sensitivity groups
according to the value of the scatter in their model abundances computed with
varied rate constants. It is shown that the distribution of species within
these groups depends on the number of atoms in a molecule and on the adopted
physical conditions. The simple method is suggested which allows to single out
reactions that are most important for the evolution of a given species.Comment: 4 pages. To appear in the proceedings of the 4th Cologne-Bonn Zermatt
Symposiu
Molecular ions in L1544. II. The ionization degree
The maps presented in Paper I are here used to infer the variation of the
column densities of HCO+, DCO+, N2H+, and N2D+ as a function of distance from
the dust peak. These results are interpreted with the aid of a crude chemical
model which predicts the abundances of these species as a function of radius in
a spherically symmetric model with radial density distribution inferred from
the observations of dust emission at millimeter wavelengths and dust absorption
in the infrared. Our main observational finding is that the N(N2D+)/N(N2H+)
column density ratio is of order 0.2 towards the L1544 dust peak as compared to
N(DCO+)/N(HCO+) = 0.04. We conclude that this result as well as the general
finding that N2H+ and N2D+ correlate well with the dust is caused by CO being
depleted to a much higher degree than molecular nitrogen in the high density
core of L1544. Depletion also favors deuterium enhancement and thus N2D+, which
traces the dense and highly CO-depleted core nucleus, is much more enhanced
than DCO+. Our models do not uniquely define the chemistry in the high density
depleted nucleus of L1544 but they do suggest that the ionization degree is a
few times 10^{-9} and that the ambipolar diffusion time scale is locally
similar to the free fall time. It seems likely that the lower limit which one
obtains to ionization degree by summing all observable molecular ions is not a
great underestimate of the true ionization degree. We predict that atomic
oxygen is abundant in the dense core and, if so, H3O+ may be the main ion in
the central highly depleted region of the core.Comment: 31 pages, 8 figures, to be published in Ap
High temperature piezoelectric properties of flux-grown α-GeO 2 single crystal
International audienceThe temperature-dependence of the piezoelectric properties of trigonal -GeO2 single-crystals obtained by the high-temperature flux method was measured by the resonance technique of the electrical impedance in the 20°C-600°C range. To approach the values of the two independent piezoelectric coefficients d11 and d14, we first measured as a function of temperature the elastic coefficients S11, S14 and S66 and the dielectric permittivity 11 which are involved in the coupling coefficient k of both the thickness shear mode and the transverse mode. A Y-cut plate with a simple +45°-rotation ((YXtwl) +45°/0°/0°) was used to measure the coupling coefficient of the thickness shear mode, and two X-turned plates ((XYtwl) +45°/0°/0° and (XYtwl)-45°/0°/0°) were prepared to characterize the coupling coefficient of two transverse modes. From the whole experimental measurements, the piezoelectric coefficients of -GeO2 were calculated up to 600 °C. They show that this crystal is one of the most efficient in regard of the -quartz-like family at room temperature, and that its thermal comportment retains large piezoelectric properties up to 600°C
- …