1,659 research outputs found

    Position Dependent Mass Oscillators and Coherent States

    Full text link
    The solving of the Schrodinger equation for a position-dependent mass quantum system is studied in two ways. First, it is found the interaction which must be applied on a mass m(x) in order to supply it with a particular spectrum of energies. Second, given a specific potential V(x) acting on the mass m(x), the related spectrum is found. The method of solution is applied to a wide class of position-dependent mass oscillators and the corresponding coherent states are constructed. The analytical expressions of such position-dependent mass coherent states preserve the functional structure of the Glauber states.Comment: 24 pages, 2 tables, 8 figure

    Acoustically Levitated Whispering-Gallery Mode Microlasers

    Get PDF
    Acoustic levitation has become a crucial technique for contactless manipulation in several fields, particularly in biological applications. However, its application in the photonics field remains largely unexplored. In this study, we implement an affordable and innovative phased-array levitator that enables stable trapping in the air of micrometer dye-doped droplets, thereby enabling the creation of microlasers. For the first time, this paper presents a detailed performance of the levitated microlaser cavity, supported by theoretical analysis concerning the hybrid technology based on the combination of whispering-gallery modes and acoustic fields. The pressure field distribution inside the acoustic cavity is numerically solved and qualitatively matched with the schlieren deflectometry technique. The optical lasing features of the levitated microlasers are highly comparable with those devices based On-a-Chip registering maximum Q-factors of ~ 105, and minimum lasing thresholds ~ 150 nJ cm−2. The emission comb is explained as a sum of multiple individual-supported whispering-gallery modes. The use of novel touchless micrometric lasers, produced with an acoustic levitator brings new technological opportunities based on photonic-acoustic technological platforms

    Functional Traits Explain Amphibian Distribution in the Brazilian Atlantic Forest

    Get PDF
    Aim: Species distributions are one of the most important ways to understand how communities interact through macroecological relationships. The functional abilities of a species, such as its plasticity in various environments, can determine its distribution and beta diversity patterns. In this study, we evaluate how functional traits influence the distribution of amphibians, and hypothesize which functional traits explain the current pattern of amphibian species composition in the Atlantic Forest. Location: Atlantic Forest, Brazil. Methods: Using potential distributions of Brazilian Atlantic Forest of amphibian species, we analysed the relative importance of abiotic factors and species functional traits in explaining species richness, endemism (with permutation multivariate analysis), and beta diversity components (i.e. total, turnover and nestedness dissimilarities). Results: Environmental variables explained 59.5% of species richness, whereas functional traits explained 15.8% of species distribution for Anuran and 88.8% for 58 Gymnophiona. Body size had the strongest correlation with the species distribution. Results of nestedness dissimilarities showed that species with medium to large body size, and species that are adapted to living in open areas tended to disperse from west to east direction. Current forest changes directly affected beta diversity patterns (i.e. most species adapted to novel environments increased their ranges). Beta diversity partitioning between humid and dry forests showed decreased nestedness and increased turnover by increasing altitude in the southeastern region of the Atlantic Forest. Main conclusions: Our study shows that functional traits directly influence the ability of the species to disperse. With the alterations of the natural environment, species more apt to these alterations have dispersed or increased their distribution, which consequently changes community structure. As result, there is nested species distribution patterns and homogenization of amphibian species composition throughout the Brazilian Atlantic Forest

    A large spectroscopic sample of L and T dwarfs from UKIDSS LAS : peculiar objects, binaries, and space density

    Get PDF
    This is a pre-copyedited, author-produced PDF of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [F. Marocco, et al, 'A large spectroscopic sample of L and T dwarfs from UKIDSS LAS: peculiar objects, binaries, and space density', MNRAS, Vol. 449)4): 3651-3692, April 2015] is available online at: https://doi.org/10.1093/mnras/stv530.We present the spectroscopic analysis of a large sample of late-M, L, and T dwarfs from UKIDSS. Using the YJHK photometry from ULAS and the red-optical photometry from SDSS we selected a sample of 262 brown dwarf candidates and we followed-up 196 of them using X-shooter on the VLT. The large wavelength coverage (0.30-2.48 μ\mum) and moderate resolution (R~5000-9000) of X-shooter allowed us to identify peculiar objects including 22 blue L dwarfs, 2 blue T dwarfs, and 2 low gravity M dwarfs. Using a spectral indices-based technique we identified 27 unresolved binary candidates, for which we determined the spectral type of the potential components via spectral deconvolution. The spectra allowed us to measure the equivalent width of the prominent absorption features and to compare them to atmospheric models. Cross-correlating the spectra with a radial velocity standard, we measured the radial velocity for our targets, and we determined the distribution of the sample, which is centred at -1.7±\pm1.2 km s1^{-1} with a dispersion of 31.5 km s1^{-1}. Using our results we estimated the space density of field brown dwarfs and compared it with the results of numerical simulations. Depending on the binary fraction, we found that there are (0.85±\pm0.55) x 103^{-3} to (1.00±\pm0.64) x 103^{-3} objects per cubic parsec in the L4-L6.5 range, (0.73±\pm0.47) x 103^{-3} to (0.85±\pm0.55) x 103^{-3} objects per cubic parsec in the L7-T0.5 range, and (0.74±\pm0.48) x 103^{-3} to (0.88±\pm0.56) x 103^{-3} objects per cubic parsec in the T1-T4.5 range. There seem to be an excess of objects in the L/T transition with respect to the late T dwarfs, a discrepancy that could be explained assuming a higher binary fraction than expected for the L/T transition, or that objects in the high-mass end and low-mass end of this regime form in different environments, i.e. following different IMFs.Peer reviewe

    Charge separation relative to the reaction plane in Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}}= 2.76 TeV

    Get PDF
    Measurements of charge dependent azimuthal correlations with the ALICE detector at the LHC are reported for Pb-Pb collisions at sNN=2.76\sqrt{s_{\rm NN}} = 2.76 TeV. Two- and three-particle charge-dependent azimuthal correlations in the pseudo-rapidity range η<0.8|\eta| < 0.8 are presented as a function of the collision centrality, particle separation in pseudo-rapidity, and transverse momentum. A clear signal compatible with a charge-dependent separation relative to the reaction plane is observed, which shows little or no collision energy dependence when compared to measurements at RHIC energies. This provides a new insight for understanding the nature of the charge dependent azimuthal correlations observed at RHIC and LHC energies.Comment: 12 pages, 3 captioned figures, authors from page 2 to 6, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/286

    The first planet detected in the WTS: an inflated hot-Jupiter in a 3.35 d orbit around a late F star [Erratum]

    Get PDF
    We report the discovery of WTS-1b, the first extrasolar planet found by the WFCAM Transit Survey, which began observations at the 3.8-m United Kingdom Infrared Telescope (UKIRT) in August 2007. Light curves comprising almost 1200 epochs with a photometric precision of better than 1 per cent to J ~ 16 were constructed for ~60000 stars and searched for periodic transit signals. For one of the most promising transiting candidates, high-resolution spectra taken at the Hobby-Eberly Telescope (HET) allowed us to estimate the spectroscopic parameters of the host star, a late-F main sequence dwarf (V=16.13) with possibly slightly subsolar metallicity, and to measure its radial velocity variations. The combined analysis of the light curves and spectroscopic data resulted in an orbital period of the substellar companion of 3.35 days, a planetary mass of 4.01 +- 0.35 Mj and a planetary radius of 1.49+0.16-0.18 Rj. WTS-1b has one of the largest radius anomalies among the known hot Jupiters in the mass range 3-5 Mj. The high irradiation from the host star ranks the planet in the pM class.Comment: 16 pages, 10 figure
    corecore