30 research outputs found
High accuracy data representation via sequence of neural networks
Sequence of neural networks has been applied to high accuracy regression in 3D as data representation in form z = f(x,y). The first term of this series of networks estimates the values of the dependent variable as it is usual, while the second term estimates the error of the first network, the third term estimates the error of the second network and so on. Assuming that the relative error of every network in this sequence is less than 100 %, the sum of the estimated values converges to the values to be estimated, therefore the estimation error can be reduced very significantly and effectively. To illustrate this method the geoid of Hungary was estimated via RBF type network. The computations were carried out with the symbolic - numeric integrated system Mathematica
Solving geoinformatics parametric polynomial systems using the improved Dixon resultant
Improvements in computational and observational technologies in geoinformatics, e.g., the use of laser scanners that produce huge point cloud data sets, or the proliferation of global navigation satellite systems (GNSS) and unmanned aircraft vehicles (UAVs), have brought with them the challenges of handling and processing this “big data”. These call for improvement or development of better processing algorithms. One way to do that is integration of symbolically presolved sub-algorithms to speed up computations. Using examples of interest from real geoinformatic problems, we will discuss the Dixon-EDF resultant as an improved resultant method for the symbolic solution of parametric polynomial systems. We will briefly describe the method itself, then discuss geoinformatics problems arising in minimum distance mapping (MDM), parameter transformations, and pose estimation essential for resection. Dixon-EDF is then compared to older notions of “Dixon resultant”, and to several respected implementations of Gröbner bases algorithms on several systems. The improved algorithm, Dixon-EDF, is found to be greatly superior, usually by orders of magnitude, in both CPU usage and RAM usage. It can solve geoinformatics problems on which the other methods fail, making symbolic solution of parametric systems feasible for many problems
Pareto optimality solution of the multi-objective photogrammetric resection-intersection problem
Reconstruction of architectural structures from photographs has recently experienced intensive efforts in computer vision research. This is achieved through the solution of nonlinear least squares (NLS) problems to obtain accurate structure and motion estimates. In Photogrammetry, NLS contribute to the determination of the 3-dimensional (3D) terrain models from the images taken from photographs. The traditional NLS approach for solving the resection-intersection problem based on implicit formulation on the one hand suffers from the lack of provision by which the involved variables can be weighted. On the other hand, incorporation of explicit formulation expresses the objectives to be minimized in different forms, thus resulting in different parametric values for the estimated parameters at non-zero residuals. Sometimes, these objectives may conflict in a Pareto sense, namely, a small change in the parameters results in the increase of one objective and a decrease of the other, as is often the case in multi-objective problems. Such is often the case with error-in-all-variable (EIV) models, e.g., in the resection-intersection problem where such change in the parameters could be caused by errors in both image and reference coordinates.This study proposes the Pareto optimal approach as a possible improvement to the solution of the resection-intersection problem, where it provides simultaneous estimation of the coordinates and orientation parameters of the cameras in a two or multistation camera system on the basis of a properly weighted multi-objective function. This objective represents the weighted sum of the square of the direct explicit differences of the measured and computed ground as well as the image coordinates. The effectiveness of the proposed method is demonstrated by two camera calibration problems, where the internal and external orientation parameters are estimated on the basis of the collinearity equations, employing the data of a Manhattan-type test field as well as the data of an outdoor, real case experiment. In addition, an architectural structural reconstruction of the Merton college court in Oxford (UK) via estimation of camera matrices is also presented. Although these two problems are different, where the first case considers the error reduction of the image and spatial coordinates, while the second case considers the precision of the space coordinates, the Pareto optimality can handle both problems in a general and flexible way
A modular approach to the simulation of steam-turbine cycles
A computer code, MODSIM (MODular SIMulator), is presented for the simulation of the steady-state performance of a turbine-preheater cycle of a power plant. The main features of this code are: flexibility, minimal memory-size requirement and good convergence properties. Analysis of a small power plant has been carried out to illustrate MODSIM's ability.
Geospatial algebraic computations: Theory and applications
© Springer-Verlag Berlin Heidelberg 2016. Improved geospatial instrumentation and technology such as in laser scanning has now resulted in millions of data being collected, e.g., point clouds. It is in realization that such huge amount of data requires efficient and robust mathematical solutions that this third edition of the book extends the second edition by introducing three new chapters: Robust parameter estimation, Multiobjective optimization and Symbolic regression. Furthermore, the linear homotopy chapter is expanded to include nonlinear homotopy. These disciplines are discussed first in the theoretical part of the book before illustrating their geospatial applications in the applications chapters where numerous numerical examples are presented. The renewed electronic supplement contains these new theoretical and practical topics, with the corresponding Mathematica statements and functions supporting their computations introduced and applied. This third edition is renamed in light of these technological advancements
Fitting a Sphere via Gröbner Basis
© 2018, Springer International Publishing AG, part of Springer Nature. In indoor and outdoor navigation, finding the local position of a sphere in mapping space employing a laser scanning technique with low-cost sensors is a very challenging and daunting task. In this contribution, we illustrate how Gröbner basis techniques can be used to solve polynomial equations arising when algebraic and geometric measures for the error are used. The effectiveness of the suggested method is demonstrated, thanks to standard CAS software like Mathematica, using numerical examples of the real world
Hybrid imaging and visualization: Employing machine learning with Mathematica - Python
The book introduces the latest methods and algorithms developed in machine and deep learning (hybrid symbolic-numeric computations, robust statistical techniques for clustering and eliminating data as well as convolutional neural networks) dealing not only with images and the use of computers, but also their applications to visualization tasks generalized by up-to-date points of view. Associated algorithms are deposited on iCloud