94 research outputs found
Hyperfine Interactions and Spin Transport in Ferromagnet-Semiconductor Heterostructures
Measurements and modeling of electron spin transport and dynamics are used to
characterize hyperfine interactions in Fe/GaAs devices with -GaAs channels.
Ga and As nuclei are polarized by electrically injected electron spins, and the
nuclear polarization is detected indirectly through the depolarization of
electron spins in the hyperfine field. The dependence of the electron spin
signal on injector bias and applied field direction is modeled by a coupled
drift-diffusion equation, including effective fields from both the electronic
and nuclear polarizations. This approach is used to determine the electron spin
polarization independently of the assumptions made in standard transport
measurements. The extreme sensitivity of the electron spin dynamics to the
nuclear spin polarization also facilitates the electrical detection of nuclear
magnetic resonance.Comment: Submitted to Phys. Rev.
Rashba spin-orbit coupling and spin relaxation in silicon quantum wells
Silicon is a leading candidate material for spin-based devices, and
two-dimensional electron gases (2DEGs) formed in silicon heterostructures have
been proposed for both spin transport and quantum dot quantum computing
applications. The key parameter for these applications is the spin relaxation
time. Here we apply the theory of D'yakonov and Perel' (DP) to calculate the
electron spin resonance linewidth of a silicon 2DEG due to structural inversion
asymmetry for arbitrary static magnetic field direction at low temperatures. We
estimate the Rashba spin-orbit coupling coefficient in silicon quantum wells
and find the and times of the spins from this mechanism as a
function of momentum scattering time, magnetic field, and device-specific
parameters. We obtain agreement with existing data for the angular dependence
of the relaxation times and show that the magnitudes are consistent with the DP
mechanism. We suggest how to increase the relaxation times by appropriate
device design.Comment: Extended derivations and info, fixed typos and refs, updated figs and
data. Worth a re-downloa
Low-temperature spin relaxation in n-type GaAs
Low-temperature electron spin relaxation is studied by the optical
orientation method in bulk n-GaAs with donor concentrations from 10^14 cm^{-3}
to 5x10^17 cm^{-3}.
A peculiarity related to the metal-to-insulator transition (MIT) is observed
in the dependence of the spin lifetime on doping near n_D = 2x10^16 cm^{-3}. In
the metallic phase, spin relaxation is governed by the Dyakonov-Perel
mechanism, while in the insulator phase it is due to anisotropic exchange
interaction and hyperfine interactio
Structural and transport properties of GaAs/delta<Mn>/GaAs/InxGa1-xAs/GaAs quantum wells
We report results of investigations of structural and transport properties of
GaAs/Ga(1-x)In(x)As/GaAs quantum wells (QWs) having a 0.5-1.8 ML thick Mn
layer, separated from the QW by a 3 nm thick spacer. The structure has hole
mobility of about 2000 cm2/(V*s) being by several orders of magnitude higher
than in known ferromagnetic two-dimensional structures. The analysis of the
electro-physical properties of these systems is based on detailed study of
their structure by means of high-resolution X-ray diffractometry and
glancing-incidence reflection, which allow us to restore the depth profiles of
structural characteristics of the QWs and thin Mn containing layers. These
investigations show absence of Mn atoms inside the QWs. The quality of the
structures was also characterized by photoluminescence spectra from the QWs.
Transport properties reveal features inherent to ferromagnetic systems: a
specific maximum in the temperature dependence of the resistance and the
anomalous Hall effect (AHE) observed in samples with both "metallic" and
activated types of conductivity up to ~100 K. AHE is most pronounced in the
temperature range where the resistance maximum is observed, and decreases with
decreasing temperature. The results are discussed in terms of interaction of
2D-holes and magnetic Mn ions in presence of large-scale potential fluctuations
related to random distribution of Mn atoms. The AHE values are compared with
calculations taking into account its "intrinsic" mechanism in ferromagnetic
systems.Comment: 15 pages, 9 figure
Spin relaxation in low-dimensional systems
We review some of the newest findings on the spin dynamics of carriers and
excitons in GaAs/GaAlAs quantum wells. In intrinsic wells, where the optical
properties are dominated by excitonic effects, we show that exciton-exciton
interaction produces a breaking of the spin degeneracy in two-dimensional
semiconductors. In doped wells, the two spin components of an optically created
two-dimensional electron gas are well described by Fermi-Dirac distributions
with a common temperature but different chemical potentials. The rate of the
spin depolarization of the electron gas is found to be independent of the mean
electron kinetic energy but accelerated by thermal spreading of the carriers.Comment: 1 PDF file, 13 eps figures, Proceedings of the 1998 International
Workshop on Nanophysics and Electronics (NPE-98)- Lecce (Italy
Linear polarization of the photoluminescence of quantum wells
The degree and orientation of the magnetic-field induced linear polarization
of the photoluminescence from a wide range of heterostructures containing
(Cd,Mn)Te quantum wells between (Cd,Mn,Mg)Te barriers has been studied as a
function of detection photon energy, applied magnetic field strength and
orientation in the quantum well plane. A theoretical description of this effect
in terms of an in-plane deformation acting on the valence band states is
presented and is verified by comparison with the experimental data. We
attempted to identify clues to the microscopic origin of the valence band spin
anisotropy and to the mechanisms which actually determine the linear
polarization of the PL in the quantum wells subject to the in-plane magnetic
field. The conclusions of the present paper apply in full measure to
non-magnetic QWs as well as ensembles of disk-like QDs with shape and/or strain
anisotropy.Comment: 21 pages, 10 figure
Manipulation of the Spin Memory of Electrons in n-GaAs
We report on the optical manipulation of the electron spin relaxation time in
a GaAs based heterostructure. Experimental and theoretical study shows that the
average electron spin relaxes through hyperfine interaction with the lattice
nuclei, and that the rate can be controlled by the electron-electron
interactions. This time has been changed from 300 ns down to 5 ns by variation
of the laser frequency. This modification originates in the optically induced
depletion of n-GaAs layer
Optical Orientation in Ferromagnet/Semiconductor Hybrids
The physics of optical pumping of semiconductor electrons in the
ferromagnet/semiconductor hybrids is discussed. Optically oriented
semiconductor electrons detect the magnetic state of the ferromagnetic film. In
turn, the ferromagnetism of the hybrid can be controlled optically with the
help of the semiconductor. Spin-spin interactions near the interface
ferromagnet/semiconductor play crucial role in the optical readout and the
manipulation of ferromagnetism.Comment: The review is written for a special issue "Spin Orientation" of
Semiconductor Science and Technology journal dedicated to the memory of B.P.
Zakharcheny
- …