290 research outputs found
Symmetries of the ratchet current
Recent advances in nonequilibrium statistical mechanics shed new light on the
ratchet effect. The ratchet motion can thus be understood in terms of symmetry
(breaking) considerations. We introduce an additional symmetry operation
besides time-reversal, that effectively reverses the nonequilibrium driving.
That operation of field-reversal combined with time-reversal decomposes the
nonequilibrium action so to clarify under what circumstances the ratchet
current is a second order effect around equilibrium, what is the direction of
the ratchet current and what are possibly the symmetries in its fluctuations.Comment: 13 pages, heavily extended versio
Langevin Equation for the Density of a System of Interacting Langevin Processes
We present a simple derivation of the stochastic equation obeyed by the
density function for a system of Langevin processes interacting via a pairwise
potential. The resulting equation is considerably different from the
phenomenological equations usually used to describe the dynamics of non
conserved (Model A) and conserved (Model B) particle systems. The major feature
is that the spatial white noise for this system appears not additively but
multiplicatively. This simply expresses the fact that the density cannot
fluctuate in regions devoid of particles. The steady state for the density
function may however still be recovered formally as a functional integral over
the coursed grained free energy of the system as in Models A and B.Comment: 6 pages, latex, no figure
Distribution of the Oscillation Period in the Underdamped One Dimensional Sinai Model
We consider the Newtonian dynamics of a massive particle in a one dimemsional
random potential which is a Brownian motion in space. This is the zero
temperature nondamped Sinai model. As there is no dissipation the particle
oscillates between two turning points where its kinetic energy becomes zero.
The period of oscillation is a random variable fluctuating from sample to
sample of the random potential. We compute the probability distribution of this
period exactly and show that it has a power law tail for large period, P(T)\sim
T^{-5/3} and an essential singluarity P(T)\sim \exp(-1/T) as T\to 0. Our exact
results are confirmed by numerical simulations and also via a simple scaling
argument.Comment: 9 pages LateX, 2 .eps figure
Control of Multi-level Voltage States in a Hysteretic SQUID Ring-Resonator System
In this paper we study numerical solutions to the quasi-classical equations
of motion for a SQUID ring-radio frequency (rf) resonator system in the regime
where the ring is highly hysteretic. In line with experiment, we show that for
a suitable choice of of ring circuit parameters the solutions to these
equations of motion comprise sets of levels in the rf voltage-current dynamics
of the coupled system. We further demonstrate that transitions, both up and
down, between these levels can be controlled by voltage pulses applied to the
system, thus opening up the possibility of high order (e.g. 10 state),
multi-level logic and memory.Comment: 8 pages, 9 figure
Quenching and Propagation of Combustion Without Ignition Temperature Cutoff
We study a reaction-diffusion equation in the cylinder , with combustion-type reaction term without
ignition temperature cutoff, and in the presence of a periodic flow. We show
that if the reaction function decays as a power of larger than three as
and the initial datum is small, then the flame is extinguished -- the
solution quenches. If, on the other hand, the power of decay is smaller than
three or initial datum is large, then quenching does not happen, and the
burning region spreads linearly in time. This extends results of
Aronson-Weinberger for the no-flow case. We also consider shear flows with
large amplitude and show that if the reaction power-law decay is larger than
three and the flow has only small plateaux (connected domains where it is
constant), then any compactly supported initial datum is quenched when the flow
amplitude is large enough (which is not true if the power is smaller than three
or in the presence of a large plateau). This extends results of
Constantin-Kiselev-Ryzhik for combustion with ignition temperature cutoff. Our
work carries over to the case , when
the critical power is , as well as to certain non-periodic flows
The Measure-theoretic Identity Underlying Transient Fluctuation Theorems
We prove a measure-theoretic identity that underlies all transient
fluctuation theorems (TFTs) for entropy production and dissipated work in
inhomogeneous deterministic and stochastic processes, including those of Evans
and Searles, Crooks, and Seifert. The identity is used to deduce a tautological
physical interpretation of TFTs in terms of the arrow of time, and its
generality reveals that the self-inverse nature of the various trajectory and
process transformations historically relied upon to prove TFTs, while necessary
for these theorems from a physical standpoint, is not necessary from a
mathematical one. The moment generating functions of thermodynamic variables
appearing in the identity are shown to converge in general only in a vertical
strip in the complex plane, with the consequence that a TFT that holds over
arbitrary timescales may fail to give rise to an asymptotic fluctuation theorem
for any possible speed of the corresponding large deviation principle. The case
of strongly biased birth-death chains is presented to illustrate this
phenomenon. We also discuss insights obtained from our measure-theoretic
formalism into the results of Saha et. al. on the breakdown of TFTs for driven
Brownian particles
Quantum response of dephasing open systems
We develop a theory of adiabatic response for open systems governed by
Lindblad evolutions. The theory determines the dependence of the response
coefficients on the dephasing rates and allows for residual dissipation even
when the ground state is protected by a spectral gap. We give quantum response
a geometric interpretation in terms of Hilbert space projections: For a two
level system and, more generally, for systems with suitable functional form of
the dephasing, the dissipative and non-dissipative parts of the response are
linked to a metric and to a symplectic form. The metric is the Fubini-Study
metric and the symplectic form is the adiabatic curvature. When the metric and
symplectic structures are compatible the non-dissipative part of the inverse
matrix of response coefficients turns out to be immune to dephasing. We give
three examples of physical systems whose quantum states induce compatible
metric and symplectic structures on control space: The qubit, coherent states
and a model of the integer quantum Hall effect.Comment: Article rewritten, two appendices added. 16 pages, 2 figure
Option Pricing Formulas based on a non-Gaussian Stock Price Model
Options are financial instruments that depend on the underlying stock. We
explain their non-Gaussian fluctuations using the nonextensive thermodynamics
parameter . A generalized form of the Black-Scholes (B-S) partial
differential equation, and some closed-form solutions are obtained. The
standard B-S equation () which is used by economists to calculate option
prices requires multiple values of the stock volatility (known as the
volatility smile). Using which well models the empirical distribution
of returns, we get a good description of option prices using a single
volatility.Comment: final version (published
Pathwise Sensitivity Analysis in Transient Regimes
The instantaneous relative entropy (IRE) and the corresponding instanta-
neous Fisher information matrix (IFIM) for transient stochastic processes are
pre- sented in this paper. These novel tools for sensitivity analysis of
stochastic models serve as an extension of the well known relative entropy rate
(RER) and the corre- sponding Fisher information matrix (FIM) that apply to
stationary processes. Three cases are studied here, discrete-time Markov
chains, continuous-time Markov chains and stochastic differential equations. A
biological reaction network is presented as a demonstration numerical example
Modeling long-range memory with stationary Markovian processes
In this paper we give explicit examples of power-law correlated stationary
Markovian processes y(t) where the stationary pdf shows tails which are
gaussian or exponential. These processes are obtained by simply performing a
coordinate transformation of a specific power-law correlated additive process
x(t), already known in the literature, whose pdf shows power-law tails 1/x^a.
We give analytical and numerical evidence that although the new processes (i)
are Markovian and (ii) have gaussian or exponential tails their autocorrelation
function still shows a power-law decay =1/T^b where b grows with a
with a law which is compatible with b=a/2-c, where c is a numerical constant.
When a<2(1+c) the process y(t), although Markovian, is long-range correlated.
Our results help in clarifying that even in the context of Markovian processes
long-range dependencies are not necessarily associated to the occurrence of
extreme events. Moreover, our results can be relevant in the modeling of
complex systems with long memory. In fact, we provide simple processes
associated to Langevin equations thus showing that long-memory effects can be
modeled in the context of continuous time stationary Markovian processes.Comment: 5 figure
- …