3,477 research outputs found

    Spin Waves in Disordered III-V Diluted Magnetic Semiconductors

    Full text link
    We propose a new scheme for numerically computing collective-mode spectra for large-size systems, using a reformulation of the Random Phase Approximation. In this study, we apply this method to investigate the spectrum and nature of the spin-waves of a (III,Mn)V Diluted Magnetic Semiconductor. We use an impurity band picture to describe the interaction of the charge carriers with the local Mn spins. The spin-wave spectrum is shown to depend sensitively on the positional disorder of the Mn atoms inside the host semiconductor. Both localized and extended spin-wave modes are found. Unusual spin and charge transport is implied.Comment: 14 pages, including 11 figure

    Early development and tuning of a global coupled cloud resolving model, and its fast response to increasing CO2

    Get PDF
    Since the dawn of functioning numerical dynamical atmosphere- and ocean models, their resolution has steadily increased, fed by an exponential growth in computational capabilities. However, because resolution of models is at all times limited by computational power a number of mostly small-scale or micro-scale processes have to be parameterised. Particularly those of atmospheric moist convection and ocean eddies are problematic when scientists seek to interpret output from model experiments. Here we present the first coupled ocean-atmosphere model experiments with sufficient resolution to dispose of moist convection and ocean eddy parameterisations. We describe the early development and discuss the challenges associated with conducting the simulations with a focus on tuning the global mean radiation balance in order to limit drifts. A four-month experiment with quadrupled CO2 is then compared with a ten-member ensemble of low-resolution simulations using MPI-ESM1.2-LR. We find broad similarities of the response, albeit with a more diversified spatial pattern with both stronger and weaker regional warming, as well as a sharpening of precipitation in the inter tropical convergence zone. These early results demonstrate that it is already now possible to learn from such coupled model experiments, even if short by nature

    Duplications of the critical Rubinstein-Taybi deletion region on chromosome 16p13.3 cause a novel recognisable syndrome

    Get PDF
    Background The introduction of molecular karyotyping technologies facilitated the identification of specific genetic disorders associated with imbalances of certain genomic regions. A detailed phenotypic delineation of interstitial 16p13.3 duplications is hampered by the scarcity of such patients. Objectives To delineate the phenotypic spectrum associated with interstitial 16p13.3 duplications, and perform a genotype-phenotype analysis. Results The present report describes the genotypic and phenotypic delineation of nine submicroscopic interstitial 16p13.3 duplications. The critically duplicated region encompasses a single gene, CREBBP, which is mutated or deleted in Rubinstein-Taybi syndrome. In 10 out of the 12 hitherto described probands, the duplication arose de novo. Conclusions Interstitial 16p13.3 duplications have a recognizable phenotype, characterized by normal to moderately retarded mental development, normal growth, mild arthrogryposis, frequently small and proximally implanted thumbs and characteristic facial features. Occasionally, developmental defects of the heart, genitalia, palate or the eyes are observed. The frequent de novo occurrence of 16p13.3 duplications demonstrates the reduced reproductive fitness associated with this genotype. Inheritance of the duplication from a clinically normal parent in two cases indicates that the associated phenotype is incompletely penetrant

    Indirect exchange in GaMnAs bilayers via spin-polarized inhomogeneous hole gas: Monte Carlo simulation

    Full text link
    The magnetic order resulting from an indirect exchange between magnetic moments provided by spin-polarized hole gas in the metallic phase of a GaMnAs double layer structure is studied via Monte Carlo simulation. The coupling mechanism involves a perturbative calculation in second order of the interaction between the magnetic moments and carriers (holes). We take into account a possible polarization of the hole gas due to the existence of an average magnetization in the magnetic layers, establishing, in this way, a self-consistency between the magnetic order and the electronic structure. That interaction leads to an internal ferromagnetic order inside each layer, and a parallel arrangement between their magnetizations, even in the case of thin layers. This fact is analyzed in terms of the inter- and intra-layer interactions.Comment: 17 pages and 14 figure

    A theory of ferromagnetism in planar heterostructures of (Mn,III)-V semiconductors

    Get PDF
    A density functional theory of ferromagnetism in heterostructures of compound semiconductors doped with magnetic impurities is presented. The variable functions in the density functional theory are the charge and spin densities of the itinerant carriers and the charge and localized spins of the impurities. The theory is applied to study the Curie temperature of planar heterostructures of III-V semiconductors doped with manganese atoms. The mean-field, virtual-crystal and effective-mass approximations are adopted to calculate the electronic structure, including the spin-orbit interaction, and the magnetic susceptibilities, leading to the Curie temperature. By means of these results, we attempt to understand the observed dependence of the Curie temperature of planar δ\delta-doped ferromagnetic structures on variation of their properties. We predict a large increase of the Curie Temperature by additional confinement of the holes in a δ\delta-doped layer of Mn by a quantum well.Comment: 8 pages, 7 figure

    Saturated Ferromagnetism and Magnetization Deficit in Optimally Annealed (Ga,Mn)As Epilayers

    Full text link
    We examine the Mn concentration dependence of the electronic and magnetic properties of optimally annealed Ga1-xMnxAs epilayers for 1.35% < x < 8.3%. The Curie temperature (Tc), conductivity, and exchange energy increase with Mn concentration up to x ~ 0.05, but are almost constant for larger x, with Tc ~ 110 K. The ferromagnetic moment per Mn ion decreases monotonically with increasing x, implying that an increasing fraction of the Mn spins do not participate in the ferromagnetism. By contrast, the derived domain wall thickness, an important parameter for device design, remains surprisingly constant.Comment: 8 pages, 4 figures, submitted for Rapid Communication in Phys Rev

    Interlayer coupling in ferromagnetic semiconductor superlattices

    Full text link
    We develop a mean-field theory of carrier-induced ferromagnetism in diluted magnetic semiconductors. Our approach represents an improvement over standard RKKY model allowing spatial inhomogeneity of the system, free-carrier spin polarization, finite temperature, and free-carrier exchange and correlation to be accounted for self-consistently. As an example, we calculate the electronic structure of a Mnx_xGa1−x_{1-x}As/GaAs superlattice with alternating ferromagnetic and paramagnetic layers and demonstrate the possibility of semiconductor magnetoresistance systems with designed properties.Comment: 4 pages, 4 figure
    • …
    corecore