1,037 research outputs found

    Time- and frequency-domain polariton interference

    Full text link
    We present experimental observations of interference between an atomic spin coherence and an optical field in a {\Lambda}-type gradient echo memory. The interference is mediated by a strong classical field that couples a weak probe field to the atomic coherence through a resonant Raman transition. Interference can be observed between a prepared spin coherence and another propagating optical field, or between multiple {\Lambda} transitions driving a single spin coherence. In principle, the interference in each scheme can yield a near unity visibility.Comment: 11 pages, 5 figure

    3D Spectroscopy of Blue Compact Galaxies. Diagnostic Diagrams

    Get PDF
    Here we present the analysis of 3D spectroscopic data of three Blue Compact Galaxies (Mrk324, Mrk370, and IIIZw102). Each of the more than 22500 spectra obtained for each galaxy has been fitted by a single gaussian from which we have inferred the velocity dispersion (sigma), the peak intensity (Ipeak), and the central wavelength (lambda_c). The analysis shows that the sigma vs Ipeak diagrams look remarkably similar to those obtained for giant extragalactic HII regions. They all present a supersonic narrow horizontal band that extends across all the range of intensities and that result from the massive nuclear star-forming regions of every galaxy. The sigma vs Ipeak diagrams present also several inclined bands of lower intensity and an even larger sigma, arising from the large galactic volumes that surround the main central emitting knots. Here we also show that the sigma vs lambda_c and lambda_c vs Ipeak diagrams, are powerful tools able to unveil the presence of high and low mass stellar clusters, and thus allow for the possibility of inferring the star formation activity of distant galaxies, even if these are not spatially resolved.Comment: 15 pages, 3 figures, accepted for publication in The Astronomical Journa

    Dynamic Adaptation on Non-Stationary Visual Domains

    Full text link
    Domain adaptation aims to learn models on a supervised source domain that perform well on an unsupervised target. Prior work has examined domain adaptation in the context of stationary domain shifts, i.e. static data sets. However, with large-scale or dynamic data sources, data from a defined domain is not usually available all at once. For instance, in a streaming data scenario, dataset statistics effectively become a function of time. We introduce a framework for adaptation over non-stationary distribution shifts applicable to large-scale and streaming data scenarios. The model is adapted sequentially over incoming unsupervised streaming data batches. This enables improvements over several batches without the need for any additionally annotated data. To demonstrate the effectiveness of our proposed framework, we modify associative domain adaptation to work well on source and target data batches with unequal class distributions. We apply our method to several adaptation benchmark datasets for classification and show improved classifier accuracy not only for the currently adapted batch, but also when applied on future stream batches. Furthermore, we show the applicability of our associative learning modifications to semantic segmentation, where we achieve competitive results

    Revealing the nature of central emission nebulae in the dwarf galaxy NGC 185

    Full text link
    In this paper we present new optical observations of the galaxy NGC 185 intended to reveal the status of supernova remnants (SNRs) in this dwarf companion of the Andromeda galaxy. Previously, it was reported that this galaxy hosts one SNR. Our deep photometric study with the 2m telescope at Rozhen National Astronomical Observatory using narrow-band Hα\alpha and [SII] filters revealed complex structure of the interstellar medium in the center of the galaxy. To confirm the classification and to study the kinematics of the detected nebulae, we carried out spectroscopic observations using the SCORPIO multi-mode spectrograph at the 6m telescope at the Special Astrophysical Observatory of the Russian Academy of Science, both in low- and high-resolution modes. We also searched the archival X-ray and radio data for counterparts of the candidate SNRs identified by our optical observations. Our observations imply the presence of one more SNR, one possible HII region previously cataloged as part of an SNR, and the presence of an additional source of shock ionization in one low-brightness PN. We detected enhanced [SII]/H_alpha and [NII]/H_alpha line ratios, as well as relatively high (up to 90 km s1^{-1}) expansion velocities of the two observed nebulae, motivating their classification as SNRs (with diameters of 45 pc and 50 pc), confirmed by both photometric and spectral observations. The estimated electron density of emission nebulae is 30 - 200 cm3^{-3}. Archival XMM-Newton observations indicate the presence of an extended, low-brightness, soft source in projection of one of the optical SNRs, whereas the archival VLA radio image shows weak, unresolved emission in the center of NGC 185.Comment: 15 pages, 14 figures, accepted for publication in A&

    The optimal form of the scanning near-field optical microscopy probe

    Full text link
    A theoretical approach to determine the optimal form of the near-field optical microscope probe is proposed. An analytical expression of the optimal probe form with subwavelength aperture has been obtained. The advantages of the probe with the optimal form are illustrated using numerical calculations. The conducted calculations show 10 times greater light throughput and the reception possibility of the more compactly localized light at the output probe aperture which could indicate better spatial resolution of the optical images in near-field optical technique using optimal probe.Comment: 12 pages, 6 figure

    Quantum memory for non-stationary light fields based on controlled reversible inhomogeneous broadening

    Get PDF
    We propose a new method for efficient storage and recall of non-stationary light fields, e.g. single photon time-bin qubits, in optically dense atomic ensembles. Our approach to quantum memory is based on controlled, reversible, inhomogeneous broadening. We briefly discuss experimental realizations of our proposal.Comment: 4 page

    2D Spectroscopy of Candidate Polar-Ring Galaxies: I. The Pair of Galaxies UGC 5600/09

    Full text link
    Observations of the pair of galaxies VV 330 with the SCORPIO multimode instrument on the 6-m Special Astrophysical Observatory telescope are presented. Large-scale velocity fields of the ionized gas in H-alfa and brightness distributions in continuum and H-alfa have been constructed for both galaxies with the help of a scanning Fabry Perot interferometer. Long-slit spectroscopy is used to study the stellar kinematics. Analysis of the data obtained has revealed a complex structure in each of the pair components. Three kinematic subsystems have been identified in UGC 5600: a stellar disk, an inner gas ring turned with respect to the disk through ~80degrees, and an outer gas disk. The stellar and outer gas disks are noncoplanar. Possible scenarios for the formation of the observed multicomponent kinematic galactic structure are considered, including the case where the large-scale velocity field of the gas is represented by the kinematic model of a disk with a warp. The velocity field in the second galaxy of the pair, UGC 5609, is more regular. A joint analysis of the data on the photometric structure and the velocity field has shown that this is probably a late-type spiral galaxy whose shape is distorted by the gravitational interaction, possibly, with UGC 5600.Comment: 18 pages, 6 figure

    NGC 7468: a galaxy with an inner polar disk

    Full text link
    We present our spectroscopic observations of the galaxy NGC 7468 performed at the 6-m Special Astrophysical Observatory telescope using the UAGS long-slit spectrograph, the multipupil fiber spectrograph MPFS, and the scanning Fabry-Perot interferometer (IFP). We found no significant deviations from the circular rotation of the galactic disk in the velocity field in the regions of brightness excess along the major axis of the galaxy (the putative polar ring). Thus, these features are either tidal structures or weakly developed spiral arms. However, we detected a gaseous disk at the center of the galaxy whose rotation plane is almost perpendicular to the plane of the galactic disk. The central collision of NGC 7468 with a gas-rich dwarf galaxy and their subsequent merging seem to be responsible for the formation of this disk.Comment: 8 pages, 6 figures, accepted in Astronomy Letters, 2004, vol 30., N 9, p. 58

    A Region of Violent Star Formation in the Irr Galaxy IC 10: Structure and Kinematics of Ionized and Neutral Gas

    Full text link
    We have used observations of the galaxy IC 10 at the 6-m telescope of the Special Astrophysical Observatory with the SCORPIO focal reducer in the Fabry-Perot interferometer mode and with the MPFS spectrograph to study the structure and kinematics of ionized gas in the central region of current intense star formation. Archive VLA 21-cm observations are used to analyze the structure and kinematics of neutral gas in this region. High-velocity wings of the H-alpha and [SII] emission lines were revealed in the inner cavity of the nebula HL 111 and in other parts of the complex of violent star formation. We have discovered local expanding neutral-gas shells around the nebulae HL 111 and HL 106.Comment: 22 pages, 10 figures; accepted in Astronomy Report
    corecore