27,025 research outputs found
Recommended from our members
Directed Placement for mVLSI Devices
Continuous-flow microfluidic devices based on integrated channel networks are becoming increasingly prevalent in research in the biological sciences. At present, these devices are physically laid out by hand by domain experts who understand both the underlying technology and the biological functions that will execute on fabricated devices. The lack of a design science that is specific to microfluidic technology creates a substantial barrier to entry. To address this concern, this article introduces Directed Placement, a physical design algorithm that leverages the natural "directedness" in most modern microfluidic designs: fluid enters at designated inputs, flows through a linear or tree-based network of channels and fluidic components, and exits the device at dedicated outputs. Directed placement creates physical layouts that share many principle similarities to those created by domain experts. Directed placement allows components to be placed closer to their neighbors compared to existing layout algorithms based on planar graph embedding or simulated annealing, leading to an average reduction in laid-out fluid channel length of 91% while improving area utilization by 8% on average. Directed placement is compatible with both passive and active microfluidic devices and is compatible with a variety of mainstream manufacturing technologies
Relativistic corrections to the Pionium Lifetime
Next to leading order contributions to the pionium lifetime are considered
within non-relativistic effective field theory. A more precise determination of
the coupling constants is then needed in order to be consistent with the
relativistic pion-pion scattering amplitude which can be obtained from chiral
perturbation theory. The relativistic correction is found to be 4.1% and
corresponds simply to a more accurate value for the non-relativistic decay
momentum.Comment: 5 pages, Latex. Includes corrections based on a more precise matching
to the pion-pion scattering amplitude from chiral perturbation theor
Include medical ethics in the Research Excellence Framework
The Research Excellence Framework of the Higher Education
Funding Council for England is taking place in 2013, its three
key elements being outputs (65% of the profile), impact (20%),
and âquality of the research environmentâ (15%). Impact will
be assessed using case studies that âmay include any social,
economic or cultural impact or benefit beyond academia that
has taken place during the assessment period.â1
Medical ethics in the UK still does not have its own cognate
assessment panelâfor example, bioethics or applied
ethicsâunlike in, for example, Australia. Several researchers
in medical ethics have reported to the Institute of Medical Ethics
that during the internal preliminary stage of the Research
Excellence Framework several medical schools have decided
to include only research that entails empirical data gathering.
Thus, conceptual papers and ethical analysis will be excluded.
The arbitrary exclusion of reasoned discussion of medical ethics
issues as a proper subject for medical research unless it is based
on empirical data gathering is conceptually mistaken. âEmpirical
ethicsâ is, of course, a legitimate component of medical ethics
research, but to act as though it is the only legitimate component
suggests, at best, a partial understanding of the nature of ethics
in general and medical ethics in particular. It also mistakenly
places medicine firmly on only one side of the
science/humanities âtwo culturesâ divide instead of in its rightful
place bridging the divide.
Given the emphasis by the General Medical Council on medical
ethics in properly preparing âtomorrowâs doctors,â we urge
medical schools to find a way of using the upcoming Research
Excellence Framework to highlight the expertise residing in
their ethicist colleagues. We are confident that appropriate
assessment will reveal work of high quality that can be shown
to have social and cultural impact and benefit beyond academia,
as required by the framework
Codon usage analysis of prokaryotic mechanosensation genes
[Abstract]: In the present study, we examined GC nucleotide composition, relative synonymous codon usage (RSCU), effective number of codons (ENC), codon adaptation index (CAI) and gene length for 308 prokaryotic mechanosensitive ion channel (MSC) genes from six evolutionary groups: Euryarchaeota, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Firmicutes, and Gammaproteobacteria. Results showed that 1). a wide variation of overrepresentation of nucleotides exists in the MSC genes; 2). codon usage bias varies considerably among the MSC genes; 3). both nucleotide constraint and gene length play an important role in shaping codon usage of the bacterial MSC genes and 4). synonymous codon usage of prokaryotic MSC genes is phylogenetically conserved. Knowledge of codon usage in prokaryotic MSC genes may benefit for the study of the MSC genes in eukaryotes in which few MSC genes have been identified and functionally analysed
Scanning Tunneling Spectroscopy of Suspended Single-Wall Carbon Nanotubes
We have performed low-temperature STM measurements on single-wall carbon
nanotubes that are freely suspended over a trench. The nanotubes were grown by
CVD on a Pt substrate with predefined trenches etched into it. Atomic
resolution was obtained on the freestanding portions of the nanotubes.
Spatially resolved spectroscopy on the suspended portion of both metallic and
semiconducting nanotubes was also achieved, showing a Coulomb-staircase
behavior superimposed on the local density of states. The spacing of the
Coulomb blockade peaks changed with tip position reflecting a changing tip-tube
capacitance
The Montage Image Mosaic Service: Custom Image Mosaics On-Demand
The Montage software suite has proven extremely useful as a general engine for reprojecting, background matching, and mosaicking astronomical image data from a wide variety of sources. The processing algorithms support all common World Coordinate System (WCS) projections and have been shown to be both astrometrically accurate and flux conserving. The background âmatchingâ algorithm does not remove background flux but rather finds the best compromise background based on all the input and matches the individual images to that. The Infrared Science Archive (IRSA), part of the Infrared Processing and Analysis Center (IPAC) at Caltech, has now wrapped the Montage software as a CGI service and provided a compute and request management infrastructure capable of producing approximately 2 TBytes / day of image mosaic output (e.g. from 2MASS and SDSS data). Besides the basic Montage engine, this service makes use of a 16-node LINUX cluster (dual processor, dual core) and the ROME request management software developed by the National Virtual Observatory (NVO). ROME uses EJB/database technology to manage user requests, queue processing and load balance between users, and managing job monitoring and user notification. The Montage service will be extended to process userdefined data collections, including private data uploads
- âŠ