3,349 research outputs found
Atmospheric potential oxygen: New observations and their implications for some atmospheric and oceanic models
Measurements of atmospheric O2/N2 ratios and CO2 concentrations can be combined into a tracer known as atmospheric potential oxygen (APO ≈ O2/N2 + CO2) that is conservative with respect to terrestrial biological activity. Consequently, APO reflects primarily ocean biogeochemistry and atmospheric circulation. Building on the work of Stephens et al. (1998), we present a set of APO observations for the years 1996-2003 with unprecedented spatial coverage. Combining data from the Princeton and Scripps air sampling programs, the data set includes new observations collected from ships in the low-latitude Pacific. The data show a smaller interhemispheric APO gradient than was observed in past studies, and different structure within the hemispheres. These differences appear to be due primarily to real changes in the APO field over time. The data also show a significant maximum in APO near the equator. Following the approach of Gruber et al. (2001), we compare these observations with predictions of APO generated from ocean O2 and CO2 flux fields and forward models of atmospheric transport. Our model predictions differ from those of earlier modeling studies, reflecting primarily the choice of atmospheric transport model (TM3 in this study). The model predictions show generally good agreement with the observations, matching the size of the interhemispheric gradient, the approximate amplitude and extent of the equatorial maximum, and the amplitude and phasing of the seasonal APO cycle at most stations. Room for improvement remains. The agreement in the interhemispheric gradient appears to be coincidental; over the last decade, the true APO gradient has evolved to a value that is consistent with our time-independent model. In addition, the equatorial maximum is somewhat more pronounced in the data than the model. This may be due to overly vigorous model transport, or insufficient spatial resolution in the air-sea fluxes used in our modeling effort. Finally, the seasonal cycles predicted by the model of atmospheric transport show evidence of an excessive seasonal rectifier in the Aleutian Islands and smaller problems elsewhere. Copyright 2006 by the American Geophysical Union
Calculation of disease dynamics in a population of households
Early mathematical representations of infectious disease dynamics assumed a single, large, homogeneously mixing population. Over the past decade there has been growing interest in models consisting of multiple smaller subpopulations (households, workplaces, schools, communities), with the natural assumption of strong homogeneous mixing within each subpopulation, and weaker transmission between subpopulations. Here we consider a model of SIRS (susceptible-infectious-recovered-suscep​tible) infection dynamics in a very large (assumed infinite) population of households, with the simplifying assumption that each household is of the same size (although all methods may be extended to a population with a heterogeneous distribution of household sizes). For this households model we present efficient methods for studying several quantities of epidemiological interest: (i) the threshold for invasion; (ii) the early growth rate; (iii) the household offspring distribution; (iv) the endemic prevalence of infection; and (v) the transient dynamics of the process. We utilize these methods to explore a wide region of parameter space appropriate for human infectious diseases. We then extend these results to consider the effects of more realistic gamma-distributed infectious periods. We discuss how all these results differ from standard homogeneous-mixing models and assess the implications for the invasion, transmission and persistence of infection. The computational efficiency of the methodology presented here will hopefully aid in the parameterisation of structured models and in the evaluation of appropriate responses for future disease outbreaks
Absorption, Photoluminescence and Resonant Rayleigh Scattering Probes of Condensed Microcavity Polaritons
We investigate and compare different optical probes of a condensed state of
microcavity polaritons in expected experimental conditions of non-resonant
pumping. We show that the energy- and momentum-resolved resonant Rayleigh
signal provide a distinctive probe of condensation as compared to, e.g.,
photoluminescence emission. In particular, the presence of a collective sound
mode both above and below the chemical potential can be observed, as well as
features directly related to the density of states of particle-hole like
excitations. Both resonant Rayleigh response and the absorption and
photoluminescence, are affected by the presence of quantum well disorder, which
introduces a distribution of oscillator strengths between quantum well excitons
at a given energy and cavity photons at a given momentum. As we show, this
distribution makes it important that in the condensed regime, scattering by
disorder is taken into account to all orders. We show that, in the low density
linear limit, this approach correctly describes inhomogeneous broadening of
polaritons. In addition, in this limit, we extract a linear blue-shift of the
lower polariton versus density, with a coefficient determined by temperature
and by a characteristic disorder length.Comment: 16 pages, 11 figures; minor correction
Collective Dynamics of Bose--Einstein Condensates in Optical Cavities
Recent experiments on Bose--Einstein condensates in optical cavities have
reported a quantum phase transition to a coherent state of the matter-light
system -- superradiance. The time dependent nature of these experiments demands
consideration of collective dynamics. Here we establish a rich phase diagram,
accessible by quench experiments, with distinct regimes of dynamics separated
by non-equilibrium phase transitions. We include the key effects of cavity
leakage and the back-reaction of the cavity field on the condensate. Proximity
to some of these phase boundaries results in critical slowing down of the decay
of many-body oscillations. Notably, this slow decay can be assisted by large
cavity losses. Predictions include the frequency of collective oscillations, a
variety of multi-phase co-existence regions, and persistent optomechanical
oscillations described by a damped driven pendulum. These findings open new
directions to study collective dynamics and non-equilibrium phase transitions
in matter-light systems.Comment: 5 pages, 5 figure
Enhanced vaccine control of epidemics in adaptive networks
We study vaccine control for disease spread on an adaptive network modeling
disease avoidance behavior. Control is implemented by adding Poisson
distributed vaccination of susceptibles. We show that vaccine control is much
more effective in adaptive networks than in static networks due to an
interaction between the adaptive network rewiring and the vaccine application.
Disease extinction rates using vaccination are computed, and orders of
magnitude less vaccine application is needed to drive the disease to extinction
in an adaptive network than in a static one
Invited Paper: The Transition from MIS Departments to Analytics Departments
This paper takes a look backward while simultaneously looking to the future for MIS departments that are making the transition to Analytics departments. MIS has a long past of providing a base of skills supporting organizations. We examine this history as well as how the blending of MIS with business translator and modeling skills has led to the development of analytics programs and concentrations. While the transition to analytics has taken place in many MIS departments at least partially, the question is how long analytics will remain a focus and when will the next major shift occur
Non-equilibrium quantum condensation in an incoherently pumped dissipative system
We study spontaneous quantum coherence in an out of equilibrium system,
coupled to multiple baths describing pumping and decay. For a range of
parameters describing coupling to, and occupation of the baths, a stable
steady-state condensed solution exists. The presence of pumping and decay
significantly modifies the spectra of phase fluctuations, leading to
correlation functions that differ both from an isolated condensate and from a
laser.Comment: 5 pages, 2 eps figure
Visual Mining of Epidemic Networks
We show how an interactive graph visualization method based on maximal
modularity clustering can be used to explore a large epidemic network. The
visual representation is used to display statistical tests results that expose
the relations between the propagation of HIV in a sexual contact network and
the sexual orientation of the patients.Comment: 8 page
Thermodynamics and Excitations of Condensed Polaritons in Disordered Microcavities
We study the thermodynamic condensation of microcavity polaritons using a
realistic model of disorder in semiconductor quantum wells. This approach
correctly describes the polariton inhomogeneous broadening in the low density
limit, and treats scattering by disorder to all orders in the condensed regime.
While the weak disorder changes the thermodynamic properties of the transition
little, the effects of disorder in the condensed state are prominent in the
excitations and can be seen in resonant Rayleigh scattering.Comment: 5 pages, 3 eps figures (published version
- …