655 research outputs found
Processing of pine (Pinus sylvestris) and birch (Betula pubescens) leaf material in a small river system in the northern Cairngorms, Scotland
International audienceProcessing rates, and macroinvertebrate colonisation, of pine needles and birch leaves were studied at eight sites on the river Nethy, a small river system in the Cairngorm region of north-eastern Scotland. Throughout this river system, processing rates were slow for pine (k values 0.0015-0.0034 day-1) and medium to fast for birch (k values 0.0085-0.0331 day-1). Plecopteran shredders dominated both pine and birch leaf packs during the early part of the experiment while chironomids were more important in the latter stages. It is suggested that the slow processing rate of pine needles could adversely affect the productivity of streams, particularly where needles provide the major allochthonous energy source and retentive features are limited. Forest managers should consider this when creating new pinewoods in treeless areas as it will take many years for the trees to reach a size at which they can effectively contribute retentive features, in the form of woody debris, to streams. Keywords: leaf processing, pine needles, shredders, Pinus sylvestris, Betula pubescens, Scotland
Theory of Coherent Time-dependent Transport in One-dimensional Multiband Semiconductor Superlattices
We present an analytical study of one-dimensional semiconductor superlattices
in external electric fields, which may be time-dependent. A number of general
results for the (quasi)energies and eigenstates are derived. An equation of
motion for the density matrix is obtained for a two-band model, and the
properties of the solutions are analyzed. An expression for the current is
obtained. Finally, Zener-tunneling in a two-band tight-binding model is
considered. The present work gives the background and an extension of the
theoretical framework underlying our recent Letter [J. Rotvig {\it et al.},
Phys. Rev. Lett. {\bf 74}, 1831 (1995)], where a set of numerical simulations
were presented.Comment: 15 pages, Revtex 3.0, uses epsf, 2 ps figures attache
Spontaneous DC Current Generation in a Resistively Shunted Semiconductor Superlattice Driven by a TeraHertz Field
We study a resistively shunted semiconductor superlattice subject to a
high-frequency electric field. Using a balance equation approach that
incorporates the influence of the electric circuit, we determine numerically a
range of amplitude and frequency of the ac field for which a dc bias and
current are generated spontaneously and show that this region is likely
accessible to current experiments. Our simulations reveal that the Bloch
frequency corresponding to the spontaneous dc bias is approximately an integer
multiple of the ac field frequency.Comment: 8 pages, Revtex, 3 Postscript figure
Resonant Photon-Assisted Tunneling Through a Double Quantum Dot: An Electron Pump From Spatial Rabi Oscillations
The time average of the fully nonlinear current through a double quantum dot,
subject to an arbitrary combination of ac and dc voltages, is calculated
exactly using the Keldysh nonequilibrium Green function technique. When driven
on resonance, the system functions as an efficient electron pump due to Rabi
oscillation between the dots. The pumping current is maximum when the coupling
to the leads equals the Rabi frequency.Comment: 6 pages, REVTEX 3.0, 3 postscript figure
Linear optical absorption spectra of mesoscopic structures in intense THz fields: free particle properties
We theoretically study the effect of THz radiation on the linear optical
absorption spectra of semiconductor structures. A general theoretical
framework, based on non-equilibrium Green functions, is formulated, and applied
to the calculation of linear optical absorption spectrum for several
non-equilibrium mesoscopic structures. We show that a blue-shift occurs and
sidebands appear in bulk-like structures, i.e., the dynamical Franz-Keldysh
effect [A.-P. Jauho and K. Johnsen, Phys. Rev. Lett. 76, 4576 (1996)]. An
analytic calculation leads to the prediction that in the case of superlattices
distinct stable steps appear in the absorption spectrum when conditions for
dynamical localization are met.Comment: 13 Pages, RevTex using epsf to include 8 ps figures. Submitted to
Phys. Rev. B (3 April 97
Quantum metastability in a class of moving potentials
In this paper we consider quantum metastability in a class of moving
potentials introduced by Berry and Klein. Potential in this class has its
height and width scaled in a specific way so that it can be transformed into a
stationary one. In deriving the non-decay probability of the system, we argue
that the appropriate technique to use is the less known method of scattering
states. This method is illustrated through two examples, namely, a moving
delta-potential and a moving barrier potential. For expanding potentials, one
finds that a small but finite non-decay probability persists at large times.
Generalization to scaling potentials of arbitrary shape is briefly indicated.Comment: 10 pages, 1 figure
An Anisotropic Wormhole:TUNNELLING in Time and Space
We discuss the structure of a gravitational euclidean instanton obtained
through coupling of gravity to electromagnetism. Its topology at fixed is
. This euclidean solution can be interpreted as a tunnelling to
a hyperbolic space (baby universe) at or alternatively as a static
wormhole that joins the two asymptotically flat spaces of a
Reissner--Nordstr\"om type solution with .Comment: PLAIN-TEX, 16 pages (4 figures not included), Report DFTT 2/9
wormholes and topological charge
I investigate solutions to the Euclidean Einstein-matter field equations with
topology in a theory with a massless periodic scalar
field and electromagnetism. These solutions carry winding number of the
periodic scalar as well as magnetic flux. They induce violations of a
quasi-topological conservation law which conserves the product of magnetic flux
and winding number on the background spacetime. I extend these solutions to a
model with stable loops of superconducting cosmic string, and interpret them as
contributing to the decay of such loops.Comment: 18 pages (includes 6 figs.), harvmac and epsf, CU-TP-62
Absolute Negative Conductivity in Two-Dimensional Electron Systems Associated with Acoustic Scattering Stimulated by Microwave Radiation
We discuss the feasibility of absolute negative conductivity (ANC) in
two-dimensional electron systems (2DES) stimulated by microwave radiation in
transverse magnetic field. The mechanism of ANC under consideration is
associated with the electron scattering on acoustic piezoelectric phonons
accompanied by the absorption of microwave photons. It is demonstrated that the
dissipative components of the 2DES dc conductivity can be negative
() when the microwave frequency is
somewhat higher than the electron cyclotron frequency or its
harmonics. The concept of ANC associated with such a scattering mechanism can
be invoked to explain the nature of the occurrence of zero-resistance
``dissipationless'' states observed in recent experiments.Comment: 7 pager, 2 figure
Microwave Photoconductivity in Two-Dimensional Electron Systems due to Photon-Assisted Interaction of Electrons with Leaky Interface Phonons
We calculate the contribution of the photon-assisted interaction of electrons
with leaky interface phonons to the dissipative dc photoconductivity of a
two-dimensional electron system in a magnetic field. The calculated
photoconductivity as a function of the frequency of microwave radiation and the
magnetic field exhibits pronounced oscillations. The obtained oscillation
structure is different from that in the case of photon-assisted interaction
with impurities. We demonstrate that at a sufficiently strong microwave
radiation in the certain ranges of its frequency (or in certain ranges of the
magnetic field) this mechanism can result in the absolute negative
conductivity.Comment: 3 pages, 1 figur
- …
