56 research outputs found

    Autoimmunity in CD73/Ecto-5′-Nucleotidase Deficient Mice Induces Renal Injury

    Get PDF
    Extracellular adenosine formed by 5′-ectonucleotidase (CD73) is involved in tubulo-glomerular feedback in the kidney but is also known to be an important immune modulator. Since CD73−/−mutant mice exhibit a vascular proinflammatory phenotype, we asked whether long term lack of CD73 causes inflammation related kidney pathologies. CD73−/−mice (13 weeks old) showed significantly increased low molecule proteinuria compared to C57BL6 wild type controls (4.8≥0.52 vs. 2.9±0.54 mg/24 h, p<0.03). Total proteinuria increased to 5.97±0.78 vs. 2.55±0.35 mg/24 h at 30 weeks (p<0.01) whereas creatinine clearance decreased (0.161±0.02 vs. 0.224±0.02 ml/min). We observed autoimmune inflammation in CD73−/−mice with glomerulitis and peritubular capillaritis, showing glomerular deposition of IgG and C3 and enhanced presence of CD11b, CD8, CD25 as well as GR-1-positive cells in the interstitium. Vascular inflammation was associated with enhanced serum levels of the cytokines IL-18 and TNF-α as well as VEGF and the chemokine MIP-2 (CXCL-2) in CD73−/−mice, whereas chemokines and cytokines in the kidney tissue were unaltered or reduced. In CD73−/−mice glomeruli, we found a reduced number of podocytes and endothelial fenestrations, increased capillaries per glomeruli, endotheliosis and enhanced tubular fibrosis. Our results show that adult CD73−/−mice exhibit spontaneous proteinuria and renal functional deterioration even without exogenous stress factors. We have identified an autoimmune inflammatory phenotype comprising the glomerular endothelium, leading to glomeruli inflammation and injury and to a cellular infiltrate of the renal interstitium. Thus, long term lack of CD73 reduced renal function and is associated with autoimmune inflammation

    Accurate and Fast Simulation of Channel Noise in Conductance-Based Model Neurons by Diffusion Approximation

    Get PDF
    Stochastic channel gating is the major source of intrinsic neuronal noise whose functional consequences at the microcircuit- and network-levels have been only partly explored. A systematic study of this channel noise in large ensembles of biophysically detailed model neurons calls for the availability of fast numerical methods. In fact, exact techniques employ the microscopic simulation of the random opening and closing of individual ion channels, usually based on Markov models, whose computational loads are prohibitive for next generation massive computer models of the brain. In this work, we operatively define a procedure for translating any Markov model describing voltage- or ligand-gated membrane ion-conductances into an effective stochastic version, whose computer simulation is efficient, without compromising accuracy. Our approximation is based on an improved Langevin-like approach, which employs stochastic differential equations and no Montecarlo methods. As opposed to an earlier proposal recently debated in the literature, our approximation reproduces accurately the statistical properties of the exact microscopic simulations, under a variety of conditions, from spontaneous to evoked response features. In addition, our method is not restricted to the Hodgkin-Huxley sodium and potassium currents and is general for a variety of voltage- and ligand-gated ion currents. As a by-product, the analysis of the properties emerging in exact Markov schemes by standard probability calculus enables us for the first time to analytically identify the sources of inaccuracy of the previous proposal, while providing solid ground for its modification and improvement we present here

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Repurposing of approved cardiovascular drugs

    Full text link

    Characteristics of testicular dysgenesis syndrome and decreased expression of SRY and SOX9 in Frasier syndrome

    No full text
    Frasier syndrome (FS) is characterized by chronic renal failure in early adulthood, varying degrees of gonadal dysgenesis, and a high risk for gonadal germ cell malignancies, particularly gonadoblastoma. Although it is known to arise from heterozygous splice mutations in intron 9 of the Wilms' tumor gene 1 (WT1), the mechanisms by which these mutations result in gonadal dysgenesis in humans remain obscure. Here we show that a decrease in WT1 + KTS isoforms due to disruption of alternative splicing of the WT1 gene in a FS patient is associated with diminished expression of the transcription factors SRY and SOX9 in Sertoli cells. These findings provide the first confirmation in humans of the results obtained by others in mice. Consequently, Sertoli cells fail to form the specialized environment within the seminiferous tubules that normally houses developing germ cells. Thus, germ cells are unable to fully mature and are blocked at the spermatogonial-spermatocyte stage. Concomitantly, subpopulations of the malignant counterpart of primordial germ cells/gonocytes, the intratubular germ cell neoplasia unclassified type (ITGCN), are identified. Furthermore, dysregulated Leydig cells produce insufficient levels of testosterone, resulting in hypospadias. Collectively, the impaired spermatogenesis, hypospadias and ITGCN comprise part of the developmental disorder known as 'testicular dysgenesis syndrome' (TDS), which arises during early fetal life. The data presented here show that critical levels of WT1 + KTS, SRY and SOX9 are required for normal Sertoli cell maturation, and subsequent normal spermatogenesis. To further study the function of human Sertoli cells in the future, we have established a human cell line

    The challenge of HIV treatment in an era of polypharmacy

    Get PDF
    The availability of potent antiretroviral therapy has transformed HIV infection into a chronic disease such that people living with HIV (PLWH) have a near normal life expectancy. However, there are continuing challenges in managing HIV infection, particularly in older patients, who often experience age-related comorbidities resulting in complex polypharmacy and an increased risk for drug-drug interactions. Furthermore, age-related physiological changes may affect the pharmacokinetics and pharmacodynamics of both antiretrovirals and comedications thereby predisposing elderly to adverse drug reactions. This review provides an overview of the therapeutic challenges when treating elderly PLWH (i.e. >65 years). Particular emphasis is placed on drug-drug interactions and other common prescribing issues (i.e. inappropriate drug use, prescribing cascade, drug-disease interaction) encountered in elderly PLWH.; Prescribing issues are common in elderly PLWH due to the presence of age-related comorbidities, organ dysfunction and physiological changes leading to a higher risk for drug-drug interactions, drugs dosage errors and inappropriate drug use.; The high prevalence of prescribing issues in elderly PLWH highlights the need for ongoing education on prescribing principles and the optimal management of individual patients. The knowledge of adverse health outcomes associated with polypharmacy and inappropriate prescribing should ensure that there are interventions to prevent harm including medication reconciliation, medication review and medication prioritization according to the risks/benefits for each patient
    corecore