205 research outputs found
On-a-chip microdischarge thruster arrays inspired by photonic device technology for plasma television
This study shows that the practical scaling of a hollow cathode thruster device to MEMS level should be possible albeit with significant divergence from traditional design. The main divergence is the need to operate at discharge pressures between 1-3bar to maintain emitter diameter pressure products of similar values to conventional hollow cathode devices. Without operating at these pressures emitter cavity dimensions become prohibitively large for maintenance of the hollow cathode effect and without which discharge voltage would be in the hundreds of volts as with conventional microdischarge devices. In addition this requires sufficiently constrictive orifice diameters in the 10”m â 50”m range for single cathodes or <5”m larger arrays. Operation at this pressure results in very small Debye lengths (4 -5.2pm) and leads to large reductions in effective work function (0.3 â 0.43eV) via the Schottky effect. Consequently, simple work function lowering compounds such as lanthanum hexaboride (LaB6) can be used to reduce operating temperature without the significant manufacturing complexity of producing porous impregnated thermionic emitters as with macro scale hollow cathodes, while still operating <1200°C at the emitter surface. The literature shows that LaB6 can be deposited using a variety of standard microfabrication techniques
Probing the Composition of Primitive Solar System Materials with a Compact Laser Mass Spectrometer
To contribute to and complement our understanding of the processes governing the formation,distribution, and evolution of primitive materials throughout the solar system, it will be critical toform connections between broad remote sensing spectroscopic surveys, laboratorymeasurements of analogs and samples delivered to Earth, and in situ measurements of thesurface composition on future primitive body missions. Recently, a laboratory prototypeemploying resonance two-step laser mass spectrometry [Getty et al., 2012] has been coupledto a cryogenic sample stage to enable measurements of analog samples that are relevant tothese fundamental questions. Analyses of mineral-aromatic mixtures and meteorite powderswill be presented. Our goals are twofold: (1) to conduct laboratory studies on solar systemanalog, meteoritic, and potentially returned samples to elucidate composition, and (2) toprovide a compact but capable analytical instrument for discovery-driven in situ interrogationof surface chemistry on a future mission, such as to a Trojan asteroid, comet, or icy moon
Structure and stability of Con(pyridine)m â clusters: Absence of metal inserted structures
A synergistic approach combining the experimental photoelectron spectroscopy and theoretical electronic structure studies is used to probe the geometrical structure and the spin magnetic moment of Con(pyridine)âm clusters. It is predicted that the ground state of Co(pyridine)â is a structure where the Co atom is inserted in a CH bond. However, the insertion is marked by a barrier of 0.33eV that is not overcome under the existing experimental conditions resulting in the formation of a structure where Co occupies a site above the pyridine plane. For Co2(pyridine)â, a ground-state structure is predicted in which the Co2 diametric moiety is inserted in one of the CH bonds, but again because of a barrier, the structure which matches the photoelectron spectrum is a higher-energy isomer in which the Co2 moiety is bonded directly to nitrogen on the pyridine ring. In all cases, the Co sites have finite magnetic moments suggesting that the complexes may provide ways of making cluster-based magnetic materials
The Gowdy T3 Cosmologies revisited
We have examined, repeated and extended earlier numerical calculations of
Berger and Moncrief for the evolution of unpolarized Gowdy T3 cosmological
models. Our results are consistent with theirs and we support their claim that
the models exhibit AVTD behaviour, even though spatial derivatives cannot be
neglected. The behaviour of the curvature invariants and the formation of
structure through evolution both backwards and forwards in time is discussed.Comment: 11 pages, LaTeX, 6 figures, results and conclusions revised and
(considerably) expande
Chern-Simons functional and the no-boundary proposal in Bianchi IX quantum cosmology
The Chern-Simons functional is an exact solution to the
Ashtekar-Hamilton-Jacobi equation of general relativity with a nonzero
cosmological constant. In this paper we consider in Bianchi type
IX cosmology with spatial surfaces. We show that among the classical
solutions generated by~, there is a two-parameter family of
Euclidean spacetimes that have a regular NUT-type closing. When two of the
three scale factors are equal, these spacetimes reduce to a one-parameter
family within the Euclidean Taub-NUT-de~Sitter metrics. For a nonzero
cosmological constant, therefore provides a semiclassical
estimate to the Bianchi~IX no-boundary wave function in Ashtekar's variables.Comment: 9 pages, REVTeX v3.0. (One reference added.
Locally U(1)*U(1) Symmetric Cosmological Models: Topology and Dynamics
We show examples which reveal influences of spatial topologies to dynamics,
using a class of spatially {\it closed} inhomogeneous cosmological models. The
models, called the {\it locally U(1)U(1) symmetric models} (or the {\it
generalized Gowdy models}), are characterized by the existence of two commuting
spatial {\it local} Killing vectors. For systematic investigations we first
present a classification of possible spatial topologies in this class. We
stress the significance of the locally homogeneous limits (i.e., the Bianchi
types or the `geometric structures') of the models. In particular, we show a
method of reduction to the natural reduced manifold, and analyze the
equivalences at the reduced level of the models as dynamical models. Based on
these fundamentals, we examine the influence of spatial topologies on dynamics
by obtaining translation and reflection operators which commute with the
dynamical flow in the phase space.Comment: 32 pages, 1 figure, LaTeX2e, revised Introduction slightly. To appear
in CQ
Manufacture of Gowdy spacetimes with spikes
In numerical studies of Gowdy spacetimes evidence has been found for the
development of localized features (spikes) involving large gradients near the
singularity. The rigorous mathematical results available up to now did not
cover this kind of situation. In this work we show the existence of large
classes of Gowdy spacetimes exhibiting features of the kind discovered
numerically. These spacetimes are constructed by applying certain
transformations to previously known spacetimes without spikes. It is possible
to control the behaviour of the Kretschmann scalar near the singularity in
detail. This curvature invariant is found to blow up in a way which is
non-uniform near the spike in some cases. When this happens it demonstrates
that the spike is a geometrically invariant feature and not an artefact of the
choice of variables used to parametrize the metric. We also identify another
class of spikes which are artefacts. The spikes produced by our method are
compared with the results of numerical and heuristic analyses of the same
situation.Comment: 25 page
Al13Hâ: Hydrogen atom site selectivity and the shell model
Using a combination of anion photoelectron spectroscopy and density functional theory calculations, we explored the influence of the shell model on H atom site selectivity in Al13Hâ. Photoelectron spectra revealed that Al13Hâ has two anionic isomers and for both of them provided vertical detachment energies (VDEs). Theoretical calculations found that the structures of these anionic isomers differ by the position of the hydrogen atom. In one, the hydrogen atom is radially bonded, while in the other, hydrogen caps a triangular face. VDEs for both anionic isomers as well as other energetic relationships were also calculated. Comparison of the measured versus calculated VDE values permitted the structure of each isomer to be confirmed and correlated with its observed photoelectron spectrum. Shell model, electron-counting considerations correctly predicted the relative stabilities of the anionic isomers and identified the stable structure of neutral Al13H
The under-ice microbiome of seasonally frozen lakes
Compared to the well-studied open water of the âgrowingâ season, under-ice conditions in lakes are characterized by low and rather constant temperature, slow water movements, limited light availability, and reduced exchange with the surrounding landscape. These conditions interact with ice-cover duration to shape microbial processes in temperate lakes and ultimately influence the phenology of community and ecosystem processes. We review the current knowledge on microorganisms in seasonally frozen lakes. Specifically, we highlight how under-ice conditions alter lake physics and the ways that this can affect the distribution and metabolism of auto- and heterotrophic microorganisms. We identify functional traits that we hypothesize are important for understanding under-ice dynamics and discuss how these traits influence species interactions. As ice coverage duration has already been seen to reduce as air temperatures have warmed, the dynamics of the under-ice microbiome are important for understanding and predicting the dynamics and functioning of seasonally frozen lakes in the near future
A Compact Two-Step Laser Time-Of-Flight Mass Spectrometer for In Situ Analysis of Planetary Surfaces
Two-step laser mass spectrometry (L2MS) has proved to be a powerful tool for the analysis of aromatic organics in icy planetary simulants, meteorites, asphaltenes on Earth, and returned cometary particles from the Stardust mission. L2MS employs two lasers to separate the desorption and ionization processes of laser desorption ionization into distinct steps. In the first step, an infrared laser desorbs neutrals from a solid sample surface; in the second step, an ultraviolet laser forms molecular ions within the neutral plume through a resonance-enhanced process to minimize fragment at ion of complex species. We have recently demonstrated that the L2MS technique is compatible with a compact TOF-MS that could form the center piece of a future in situ landed planetary mission emphasizing surface chemistry or astrobiology. The increased sensitivity and selectivity offered by this technique has been demonstrated in analyses of various planetary analog mixtures and meteorite powders, and representative results of these analyses will be presented
- âŠ