8,511 research outputs found

    Applications of remote sensing to stream discharge predictions

    Get PDF
    A feasibility study has been initiated on the use of remote earth observations for augmenting stream discharge prediction for the design and/or operation of major reservoir systems, pumping systems and irrigation systems. The near-term objectives are the interpolation of sparsely instrumented precipitation surveillance networks and the direct measurement of water loss by evaporation. The first steps of the study covered a survey of existing reservoir systems, stream discharge prediction methods, gage networks and the development of a self-adaptive variation of the Kentucky Watershed model, SNOPSET, that includes snowmelt. As a result of these studies, a special three channel scanner is being built for a small aircraft, which should provide snow, temperature and water vapor maps for the spatial and temporal interpolation of stream gages

    Noise elimination by piecewise cross correlation of photometer outputs

    Get PDF
    A piecewise cross correlation technique has been developed to analyze the outputs of remote detection devices. The purpose of this technique is to eliminate the noise from optical background fluctuations, from transmission fluctuations and from detectors by calculating the instantaneous product of the detector output and a reference signal. Each noise component causes positive and negative oscillations of the instantaneous product and may thus be cancelled by an integration of the instantaneous product. The resultant product mean values will then contain the desired information on the spatial and temporal variation of emission, absorption and scattering processes in the atmosphere

    Axiomatization and Models of Scientific Theories

    Get PDF
    In this paper we discuss two approaches to the axiomatization of scien- tific theories in the context of the so called semantic approach, according to which (roughly) a theory can be seen as a class of models. The two approaches are associated respectively to Suppes’ and to da Costa and Chuaqui’s works. We argue that theories can be developed both in a way more akin to the usual mathematical practice (Suppes), in an informal set theoretical environment, writing the set theoretical predicate in the language of set theory itself or, more rigorously (da Costa and Chuaqui), by employing formal languages that help us in writing the postulates to define a class of structures. Both approaches are called internal, for we work within a mathematical framework, here taken to be first-order ZFC. We contrast these approaches with an external one, here discussed briefly. We argue that each one has its strong and weak points, whose discussion is relevant for the philosophical foundations of science

    Late growth stages and post-growth diffusion in organic epitaxy: PTCDA on Ag(111)

    Full text link
    The late growth stages and the post-growth diffusion of crystalline organic thin films have been investigated for 3,4,9,10-perylenetetracarboxylic dianhydride (PTCDA) on Ag(111), a model system in organic epitaxy. In situ x-ray measurements at the anti-Bragg point during the growth show intensity oscillations followed by a time-independent intensity which is independent of the growth temperature. At T > 350 K, the intensity increases after growth up to a temperature-dependent saturation value due to a post-growth diffusion process. The time-independent intensity and the subsequent intensity recovery have been reproduced by models based on the morphology change as a function of the growth temperature. The morphology found after the post-growth diffusion processes has been studied by specular rod measurements.Comment: 9 pages, 8 figures, accepted for publication in Surface Scienc

    Kinetic energy cascades in quasi-geostrophic convection in a spherical shell

    Full text link
    We consider triadic nonlinear interaction in the Navier-Stokes equation for quasi-geostrophic convection in a spherical shell. This approach helps understanding the origin of kinetic energy transport in the system and the particular scheme of mode interaction, as well as the locality of the energy transfer. The peculiarity of convection in the sphere, concerned with excitation of Rossby waves, is considered. The obtained results are compared with our previous study in Cartesian geometry

    Анализ поляризационных состояний умеренно релятивистских позитронов при регистрации аннигиляционных фотонов

    Get PDF
    Предложен и обоснован новый метод анализа поляризационных состояний умеренно релятивистских позитронных пучков. В отличие от известных методов предлагается измерить продольную поляризацию позитронов по выходу аннигиляционных квантов из намагниченной железной мишени, через которую проходит позитронный пучок. На базе библиотек GEANT4 построена математическая модель эксперимента. Проведены сравнения с существующей моделью

    Direct evidence for efficient ultrafast charge separation in epitaxial WS2_2/graphene heterostructure

    Get PDF
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2_2 and graphene. This heterostructure combines the benefits of a direct gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2_2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2_2 layer. The resulting charge transfer state is found to have a lifetime of 1\sim1\,ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2_2 and graphene bands as revealed by high resolution ARPES. In combination with spin-selective excitation using circularly polarized light the investigated WS2_2/graphene heterostructure might provide a new platform for efficient optical spin injection into graphene.Comment: 28 pages, 14 figure

    Direct evidence for efficient ultrafast charge separation in epitaxial WS<sub>2</sub>/graphene heterostructures

    No full text
    We use time- and angle-resolved photoemission spectroscopy (tr-ARPES) to investigate ultrafast charge transfer in an epitaxial heterostructure made of monolayer WS2 and graphene. This heterostructure combines the benefits of a direct-gap semiconductor with strong spin-orbit coupling and strong light-matter interaction with those of a semimetal hosting massless carriers with extremely high mobility and long spin lifetimes. We find that, after photoexcitation at resonance to the A-exciton in WS2, the photoexcited holes rapidly transfer into the graphene layer while the photoexcited electrons remain in the WS2 layer. The resulting charge-separated transient state is found to have a lifetime of ∼1 ps. We attribute our findings to differences in scattering phase space caused by the relative alignment of WS2 and graphene bands as revealed by high-resolution ARPES. In combination with spin-selective optical excitation, the investigated WS2/graphene heterostructure might provide a platform for efficient optical spin injection into graphene

    Efavirenz Intoxication Due to Slow Hepatic Metabolism

    Get PDF
    We describe a human immunodeficiency virus-positive woman who presented with severe psychosis while she was receiving therapy with efavirenz. Her plasma efavirenz level was excessively high. Genetic investigation showed that she was homozygous for the CYP2B6 G516T allele, resulting in slow hepatic metabolism. After the dosage of efavirenz was lowered, all neuropsychiatric symptoms subside

    Transport of magnetic field by a turbulent flow of liquid sodium

    Full text link
    We study the effect of a turbulent flow of liquid sodium generated in the von K\'arm\'an geometry, on the localized field of a magnet placed close to the frontier of the flow. We observe that the field can be transported by the flow on distances larger than its integral length scale. In the most turbulent configurations, the mean value of the field advected at large distance vanishes. However, the rms value of the fluctuations increases linearly with the magnetic Reynolds number. The advected field is strongly intermittent.Comment: 4 pages, 6 figure
    corecore