16,740 research outputs found
Right Taste, Wrong Place’: Local Food Cultures, (Dis)identification and the Formation of Middle-class Identity
This article investigates how culinary taste contributes to the formation of middle class identity in a working class context in the UK. We explore practices of food consumption among a group of individuals working at a UK university located in a working class city. We find a rather limited and discrepant cosmopolitanism, in which culinary practices are evaluated in terms of those worth engaging in, and those not worth engaging in, based on their ‘user friendliness’ for cosmopolitan middle class dispositions. Depictions of the local food culture as lacking are also dominant, used as a negative ground against which these dispositions are hierarchically formulated. Here middle class culinary tastes seem to be driven by disengagement with the wrong sort of place and a relatively closed alignment with the ‘proper’ and the ‘safe’ rather than by any open creative individuality
Groundwater seepage landscapes from distant and local sources in experiments and on Mars
© 2014 Author(s). Valleys with theater-shaped heads can form due to the seepage of groundwater and as a result of knickpoint (waterfall) erosion generated by overland flow. This ambiguity in the mechanism of formation hampers the interpretation of such valleys on Mars, particularly since there is limited knowledge of material properties. Moreover, the hydrological implications of a groundwater or surface water origin are important for our understanding of the evolution of surface features on Mars, and a quantification of valley morphologies at the landscape scale may provide diagnostic insights on the formative hydrological conditions. However, flow patterns and the resulting landscapes produced by different sources of groundwater are poorly understood. We aim to improve the understanding of the formation of entire valley landscapes through seepage processes from different groundwater sources that will provide a framework of landscape metrics for the interpretation of such systems. We study groundwater seepage from a distant source of groundwater and from infiltration of local precipitation in a series of sandbox experiments and combine our results with previous experiments and observations of the Martian surface. Key results are that groundwater flow piracy acts on valleys fed by a distant groundwater source and results in a sparsely dissected landscape of many small and a few large valleys. In contrast, valleys fed by a local groundwater source, i.e., nearby infiltration, result in a densely dissected landscape. In addition, valleys fed by a distant groundwater source grow towards that source, while valleys with a local source grow in a broad range of directions and have a strong tendency to bifurcate, particularly on flatter surfaces. We consider these results with respect to two Martian cases: Louros Valles shows properties of seepage by a local source of groundwater and Nirgal Vallis shows evidence of a distant source, which we interpret as groundwater flow from Tharsis
Evidence of Low-Temperature Superparamagnetism in Mn_{4}$ Nanoparticle Ensembles
Please refer to the abstract within the main body of the paper
Pennsylvania Folklife Vol. 28, No. 1
• Women, Servants and Family Life in Early America • Be it Remembered that these Indentured Servants and Apprentices • Gute Socha fer Hame tzu Nemma • Taufscheine: A New Index for People Hunters • Aldes / Neieshttps://digitalcommons.ursinus.edu/pafolklifemag/1080/thumbnail.jp
The evolutionary state of short-period magnetic white dwarf binaries
We present phase-resolved spectroscopy of two new short-period low accretion rate magnetic binaries, SDSS J125044.42+154957.3 (Porb= 86 min) and SDSS J151415.65+074446.5 (Porb= 89 min). Both systems were previously identified as magnetic white dwarfs from the Zeeman splitting of the Balmer absorption lines in their optical spectra. Their spectral energy distributions exhibit a large near-infrared excess, which we interpret as a combination of cyclotron emission and possibly a late-type companion star. No absorption features from the companion are seen in our optical spectra. We derive the orbital periods from a narrow, variable Hα emission line which we show to originate on the companion star. The high radial velocity amplitude measured in both systems suggests a high orbital inclination, but we find no evidence for eclipses in our data. The two new systems resemble the polar EF Eri in its prolonged low state and also SDSS J121209.31+013627.7, a known magnetic white dwarf plus possible brown dwarf binary, which was also recovered by our method
Sign of the Casimir-Polder interaction between atoms and oil-water interfaces: Subtle dependence on dielectric properties
We demonstrate that Casimir-Polder energies between noble gas atoms
(dissolved in water) and oil-water interfaces are highly surface specific. Both
repulsion (e.g. hexane) and attraction (e.g. glycerine and cyclodecane) is
found with different oils. For several intermediate oils (e.g. hexadecane,
decane, and cyclohexane) both attraction and repulsion can be found in the same
system. Near these oil-water interfaces the interaction is repulsive in the
non-retarded limit and turns attractive at larger distances as retardation
becomes important. These highly surface specific interactions may have a role
to play in biological systems where the surface may be more or less accessible
to dissolved atoms.Comment: 5 pages, 6 figure
Design, ancillary testing, analysis and fabrication data for the advanced composite stabilizer for Boeing 737 aircraft. Volume 1: Technical summary
The horizontal stabilizer of the 737 transport was redesigned. Five shipsets were fabricated using composite materials. Weight reduction greater than the 20% goal was achieved. Parts and assemblies were readily produced on production-type tooling. Quality assurance methods were demonstrated. Repair methods were developed and demonstrated. Strength and stiffness analytical methods were substantiated by comparison with test results. Cost data was accumulated in a semiproduction environment. FAA certification was obtained
Nonlinear Dynamics of Capacitive Charging and Desalination by Porous Electrodes
The rapid and efficient exchange of ions between porous electrodes and
aqueous solutions is important in many applications, such as electrical energy
storage by super-capacitors, water desalination and purification by capacitive
deionization (or desalination), and capacitive extraction of renewable energy
from a salinity difference. Here, we present a unified mean-field theory for
capacitive charging and desalination by ideally polarizable porous electrodes
(without Faradaic reactions or specific adsorption of ions) in the limit of
thin double layers (compared to typical pore dimensions). We illustrate the
theory in the case of a dilute, symmetric, binary electrolyte using the
Gouy-Chapman-Stern (GCS) model of the double layer, for which simple formulae
are available for salt adsorption and capacitive charging of the diffuse part
of the double layer. We solve the full GCS mean-field theory numerically for
realistic parameters in capacitive deionization, and we derive reduced models
for two limiting regimes with different time scales: (i) In the
"super-capacitor regime" of small voltages and/or early times where the porous
electrode acts like a transmission line, governed by a linear diffusion
equation for the electrostatic potential, scaled to the RC time of a single
pore. (ii) In the "desalination regime" of large voltages and long times, the
porous electrode slowly adsorbs neutral salt, governed by coupled, nonlinear
diffusion equations for the pore-averaged potential and salt concentration
Ultrathin Metallic Coatings Can Induce Quantum Levitation between Nanosurfaces
There is an attractive Casimir-Lifshitz force between two silica surfaces in
a liquid (bromobenze or toluene). We demonstrate that adding an ultrathin
(5-50{\AA}) metallic nanocoating to one of the surfaces results in repulsive
Casimir-Lifshitz forces above a critical separation. The onset of such quantum
levitation comes at decreasing separations as the film thickness decreases.
Remarkably the effect of retardation can turn attraction into repulsion. From
that we explain how an ultrathin metallic coating may prevent
nanoelectromechanical systems from crashing together.Comment: 4 pages, 5 figure
- …