2,620 research outputs found
Dissociation of CH4 by electron impact: Production of metastable hydrogen and carbon fragments
Metastable fragments produced by electron impact excitation of CH4 have been investigated for incident electron energies from threshold to 300 eV. Only metastable hydrogen and carbon atoms were observed. Onset energies for the production of metastable hydrogen atoms were observed at electron impact energies of 22.0 + or - .5 eV, 25.5 + or - .6 eV, 36.7 + or - .6 eV and 66 + or - 3 eV, and at 26.6 + or - .6 eV for the production of metastable carbon atoms. Most of the fragments appear to have been formed in high-lying Rydberg states. The total metastable hydrogen cross section reaches a maximum value of approximately 1 X 10 to the minus 18th power sq cm at 100 eV. At the same energy, the metastable carbon cross section is 2 x 10 to the minus 19th power sq cm
A rapid prototyping/artificial intelligence approach to space station-era information management and access
Applications of rapid prototyping and Artificial Intelligence techniques to problems associated with Space Station-era information management systems are described. In particular, the work is centered on issues related to: (1) intelligent man-machine interfaces applied to scientific data user support, and (2) the requirement that intelligent information management systems (IIMS) be able to efficiently process metadata updates concerning types of data handled. The advanced IIMS represents functional capabilities driven almost entirely by the needs of potential users. Space Station-era scientific data projected to be generated is likely to be significantly greater than data currently processed and analyzed. Information about scientific data must be presented clearly, concisely, and with support features to allow users at all levels of expertise efficient and cost-effective data access. Additionally, mechanisms for allowing more efficient IIMS metadata update processes must be addressed. The work reported covers the following IIMS design aspects: IIMS data and metadata modeling, including the automatic updating of IIMS-contained metadata, IIMS user-system interface considerations, including significant problems associated with remote access, user profiles, and on-line tutorial capabilities, and development of an IIMS query and browse facility, including the capability to deal with spatial information. A working prototype has been developed and is being enhanced
Pipeline column separation flow regimes
A generalized set of pipeline column separation equations is presented describing all conventional types of low-pressure regions. These include water hammer zones, distributed vaporous cavitation, vapor cavities, and shocks (that eliminate distributed vaporous cavitation zones). Numerical methods for solving these equations are then considered, leading to a review of three numerical models of column separation. These include the discrete vapor cavity model, the discrete gas cavity model, and the generalized interface vaporous cavitation model. The generalized interface vaporous cavitation model enables direct tracking of actual column separation phenomena (e.g., discrete cavities, vaporous cavitation zones), and consequently, better insight into the transient event. Numerical results from the three column separation models are compared with results of measurements for a number of flow regimes initiated by a rapid closure of a downstream valve in a sloping pipeline laboratory apparatus. Finally, conclusions are drawn about the accuracy of the modeling approaches. A new classification of column separation (active or passive) is proposed based on whether the maximum pressure in a pipeline following column separation results in a short-duration pressure pulse that exceeds the magnitude of the Joukowsky pressure rise for rapid valve closure.Anton Bergant and Angus R. Simpso
Incorporation of excluded volume correlations into Poisson-Boltzmann theory
We investigate the effect of excluded volume interactions on the electrolyte
distribution around a charged macroion. First, we introduce a criterion for
determining when hard-core effects should be taken into account beyond standard
mean field Poisson-Boltzmann (PB) theory. Next, we demonstrate that several
commonly proposed local density functional approaches for excluded volume
interactions cannot be used for this purpose. Instead, we employ a non-local
excess free energy by using a simple constant weight approach. We compare the
ion distribution and osmotic pressure predicted by this theory with Monte Carlo
simulations. They agree very well for weakly developed correlations and give
the correct layering effect for stronger ones. In all investigated cases our
simple weighted density theory yields more realistic results than the standard
PB approach, whereas all local density theories do not improve on the PB
density profiles but on the contrary, deviate even more from the simulation
results.Comment: 23 pages, 7 figures, 1 tabl
Fractionation effects in phase equilibria of polydisperse hard sphere colloids
The equilibrium phase behaviour of hard spheres with size polydispersity is
studied theoretically. We solve numerically the exact phase equilibrium
equations that result from accurate free energy expressions for the fluid and
solid phases, while accounting fully for size fractionation between coexisting
phases. Fluids up to the largest polydispersities that we can study (around
14%) can phase separate by splitting off a solid with a much narrower size
distribution. This shows that experimentally observed terminal polydispersities
above which phase separation no longer occurs must be due to non-equilibrium
effects. We find no evidence of re-entrant melting; instead, sufficiently
compressed solids phase separate into two or more solid phases. Under
appropriate conditions, coexistence of multiple solids with a fluid phase is
also predicted. The solids have smaller polydispersities than the parent phase
as expected, while the reverse is true for the fluid phase, which contains
predominantly smaller particles but also residual amounts of the larger ones.
The properties of the coexisting phases are studied in detail; mean diameter,
polydispersity and volume fraction of the phases all reveal marked
fractionation. We also propose a method for constructing quantities that
optimally distinguish between the coexisting phases, using Principal Component
Analysis in the space of density distributions. We conclude by comparing our
predictions to perturbative theories for near-monodisperse systems and to Monte
Carlo simulations at imposed chemical potential distribution, and find
excellent agreement.Comment: 21 pages, 23 figures, 2 table
Apparent Fractality Emerging from Models of Random Distributions
The fractal properties of models of randomly placed -dimensional spheres
(=1,2,3) are studied using standard techniques for calculating fractal
dimensions in empirical data (the box counting and Minkowski-sausage
techniques). Using analytical and numerical calculations it is shown that in
the regime of low volume fraction occupied by the spheres, apparent fractal
behavior is observed for a range of scales between physically relevant
cut-offs. The width of this range, typically spanning between one and two
orders of magnitude, is in very good agreement with the typical range observed
in experimental measurements of fractals. The dimensions are not universal and
depend on density. These observations are applicable to spatial, temporal and
spectral random structures. Polydispersivity in sphere radii and
impenetrability of the spheres (resulting in short range correlations) are also
introduced and are found to have little effect on the scaling properties. We
thus propose that apparent fractal behavior observed experimentally over a
limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at
http://www.fh.huji.ac.il/~dani
A recurrent neural network with ever changing synapses
A recurrent neural network with noisy input is studied analytically, on the
basis of a Discrete Time Master Equation. The latter is derived from a
biologically realizable learning rule for the weights of the connections. In a
numerical study it is found that the fixed points of the dynamics of the net
are time dependent, implying that the representation in the brain of a fixed
piece of information (e.g., a word to be recognized) is not fixed in time.Comment: 17 pages, LaTeX, 4 figure
Derivation of Hebb's rule
On the basis of the general form for the energy needed to adapt the
connection strengths of a network in which learning takes place, a local
learning rule is found for the changes of the weights. This biologically
realizable learning rule turns out to comply with Hebb's neuro-physiological
postulate, but is not of the form of any of the learning rules proposed in the
literature.
It is shown that, if a finite set of the same patterns is presented over and
over again to the network, the weights of the synapses converge to finite
values.
Furthermore, it is proved that the final values found in this biologically
realizable limit are the same as those found via a mathematical approach to the
problem of finding the weights of a partially connected neural network that can
store a collection of patterns. The mathematical solution is obtained via a
modified version of the so-called method of the pseudo-inverse, and has the
inverse of a reduced correlation matrix, rather than the usual correlation
matrix, as its basic ingredient. Thus, a biological network might realize the
final results of the mathematician by the energetically economic rule for the
adaption of the synapses found in this article.Comment: 29 pages, LaTeX, 3 figure
Multiple-Point and Multiple-Time Correlations Functions in a Hard-Sphere Fluid
A recent mode coupling theory of higher-order correlation functions is tested
on a simple hard-sphere fluid system at intermediate densities. Multi-point and
multi-time correlation functions of the densities of conserved variables are
calculated in the hydrodynamic limit and compared to results obtained from
event-based molecular dynamics simulations. It is demonstrated that the mode
coupling theory results are in excellent agreement with the simulation results
provided that dissipative couplings are included in the vertices appearing in
the theory. In contrast, simplified mode coupling theories in which the
densities obey Gaussian statistics neglect important contributions to both the
multi-point and multi-time correlation functions on all time scales.Comment: Second one in a sequence of two (in the first, the formalism was
developed). 12 pages REVTeX. 5 figures (eps). Submitted to Phys.Rev.
Laxative use and incident falls, fractures and change in bone mineral density in postmenopausal women: results from the Women\u27s Health Initiative
BACKGROUND: Laxatives are among the most widely used over-the-counter medications in the United States but studies examining their potential hazardous side effects are sparse. Associations between laxative use and risk for fractures and change in bone mineral density [BMD] have not previously been investigated.
METHODS: This prospective analysis included 161,808 postmenopausal women (8907 users and 151,497 nonusers of laxatives) enrolled in the WHI Observational Study and Clinical Trials. Women were recruited from October 1, 1993, to December 31, 1998, at 40 clinical centers in the United States and were eligible if they were 50 to 79 years old and were postmenopausal at the time of enrollment. Medication inventories were obtained during in-person interviews at baseline and at the 3-year follow-up visit on everyone. Data on self-reported falls (\u3e/=2), fractures (hip and total fractures) were used. BMD was determined at baseline and year 3 at 3 of the 40 clinical centers of the WHI.
RESULTS: Age-adjusted rates of hip fractures and total fractures, but not for falls were similar between laxative users and non-users regardless of duration of laxative use. The multivariate-adjusted hazard ratios for any laxative use were 1.06 (95% confidence interval [CI], 1.03-1.10) for falls, 1.02 (95% CI, 0.85-1.22) for hip fractures and 1.01 (95% CI, 0.96-1.07) for total fractures. The BMD levels did not statistically differ between laxative users and nonusers at any skeletal site after 3-years intake.
CONCLUSION: These findings support a modest association between laxative use and increase in the risk of falls but not for fractures. Its use did not decrease bone mineral density levels in postmenopausal women. Maintaining physical functioning, and providing adequate treatment of comorbidities that predispose individuals for falls should be considered as first measures to avoid potential negative consequences associated with laxative use
- …