197 research outputs found

    Demonstration and Comparison of Operation of Photomultiplier Tubes at Liquid Argon Temperature

    Full text link
    Liquified noble gases are widely used as a target in direct Dark Matter searches. Signals from scintillation in the liquid, following energy deposition from the recoil nuclei scattered by Dark Matter particles (e.g. WIMPs), should be recorded down to very low energies by photosensors suitably designed to operate at cryogenic temperatures. Liquid Argon based detectors for Dark Matter searches currently implement photo multiplier tubes for signal read-out. In the last few years PMTs with photocathodes operating down to liquid Argon temperatures (87 K) have been specially developed with increasing Quantum Efficiency characteristics. The most recent of these, Hamamatsu Photonics Mod. R11065 with peak QE up to about 35%, has been extensively tested within the R&D program of the WArP Collaboration. During these testes the Hamamatsu PMTs showed superb performance and allowed obtaining a light yield around 7 phel/keVee in a Liquid Argon detector with a photocathodic coverage in the 12% range, sufficient for detection of events down to few keVee of energy deposition. This shows that this new type of PMT is suited for experimental applications, in particular for new direct Dark Matter searches with LAr-based experiments

    Search for anomalies in the {\nu}e appearance from a {\nu}{\mu} beam

    Get PDF
    We report an updated result from the ICARUS experiment on the search for {\nu}{\mu} ->{\nu}e anomalies with the CNGS beam, produced at CERN with an average energy of 20 GeV and travelling 730 km to the Gran Sasso Laboratory. The present analysis is based on a total sample of 1995 events of CNGS neutrino interactions, which corresponds to an almost doubled sample with respect to the previously published result. Four clear {\nu}e events have been visually identified over the full sample, compared with an expectation of 6.4 +- 0.9 events from conventional sources. The result is compatible with the absence of additional anomalous contributions. At 90% and 99% confidence levels the limits to possible oscillated events are 3.7 and 8.3 respectively. The corresponding limit to oscillation probability becomes consequently 3.4 x 10-3 and 7.6 x 10-3 respectively. The present result confirms, with an improved sensitivity, the early result already published by the ICARUS collaboration

    Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam

    Get PDF
    During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton beam bunches, separated by 100 ns. This tightly bunched beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing synchronization have been substantially improved for this campaign, taking ad-vantage of additional independent GPS receivers, both at CERN and LNGS as well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS. The ICARUS-T600 detector has collected 25 beam-associated events; the corresponding time of flight has been accurately evaluated, using all different time synchronization paths. The measured neutrino time of flight is compatible with the arrival of all events with speed equivalent to the one of light: the difference between the expected value based on the speed of light and the measured value is tof_c - tof_nu = (0.10 \pm 0.67stat. \pm 2.39syst.) ns. This result is in agreement with the value previously reported by the ICARUS collaboration, tof_c - tof_nu = (0.3 \pm 4.9stat. \pm 9.0syst.) ns, but with improved statistical and systematic errors.Comment: 21 pages, 13 figures, 1 tabl

    AGILE detection of delayed gamma-ray emission from GRB 080514B

    Get PDF
    GRB 080514B is the first gamma ray burst (GRB), since the time of EGRET, for which individual photons of energy above several tens of MeV have been detected with a pair-conversion tracker telescope. This burst was discovered with the Italian AGILE gamma-ray satellite. The GRB was localized with a cooperation by AGILE and the interplanetary network (IPN). The gamma-ray imager (GRID) estimate of the position, obtained before the SuperAGILE-IPN localization, is found to be consistent with the burst position. The hard X-ray emission observed by SuperAGILE lasted about 7 s, while there is evidence that the emission above 30 MeV extends for a longer duration (at least ~13 s). Similar behavior was seen in the past from a few other GRBs observed with EGRET. However, the latter measurements were affected, during the brightest phases, by instrumental dead time effects, resulting in only lower limits to the burst intensity. Thanks to the small dead time of the AGILE/GRID we could assess that in the case of GRB 080514B the gamma-ray to X-ray flux ratio changes significantly between the prompt and extended emission phase.Comment: A&A letters, in pres

    A Proposal for a Three Detector Short-Baseline Neutrino Oscillation Program in the Fermilab Booster Neutrino Beam

    Get PDF
    A Short-Baseline Neutrino (SBN) physics program of three LAr-TPC detectors located along the Booster Neutrino Beam (BNB) at Fermilab is presented. This new SBN Program will deliver a rich and compelling physics opportunity, including the ability to resolve a class of experimental anomalies in neutrino physics and to perform the most sensitive search to date for sterile neutrinos at the eV mass-scale through both appearance and disappearance oscillation channels. Using data sets of 6.6e20 protons on target (P.O.T.) in the LAr1-ND and ICARUS T600 detectors plus 13.2e20 P.O.T. in the MicroBooNE detector, we estimate that a search for muon neutrino to electron neutrino appearance can be performed with ~5 sigma sensitivity for the LSND allowed (99% C.L.) parameter region. In this proposal for the SBN Program, we describe the physics analysis, the conceptual design of the LAr1-ND detector, the design and refurbishment of the T600 detector, the necessary infrastructure required to execute the program, and a possible reconfiguration of the BNB target and horn system to improve its performance for oscillation searches.Comment: 209 pages, 129 figure

    Multiwavelength observations of 3C 454.3. I. The AGILE 2007 November campaign on the "Crazy Diamond"

    Get PDF
    [Abridged] We report on a multiwavelength observation of the blazar 3C 454.3 (which we dubbed "crazy diamond") carried out on November 2007 by means of the astrophysical satellites AGILE, INTEGRAL, Swift, the WEBT Consortium, and the optical-NIR telescope REM. 3C 454.3 is detected at a 19σ\sim 19-\sigma level during the 3-week observing period, with an average flux above 100 MeV of FE>100MeV=(170±13)×108F_{\rm E>100MeV} = (170 \pm 13) \times 10^{-8} \phcmsec. The gamma-ray spectrum can be fit with a single power-law with photon index ΓGRID=1.73±0.16\Gamma_{\rm GRID} = 1.73 \pm 0.16 between 100 MeV and 1 GeV. We detect significant day-by-day variability of the gamma-ray emission during our observations, and we can exclude that the fluxes are constant at the 99.6% (2.9σ\sim 2.9 \sigma) level. The source was detected typically around 40 degrees off-axis, and it was substantially off--axis in the field of view of the AGILE hard X-ray imager. However, a 5-day long ToO observation by INTEGRAL detected 3C 454.3 at an average flux of about F20200keV=1.49×103F_{\rm 20-200 keV} = 1.49 \times 10^{-3} \phcmsec with an average photon index of ΓIBIS=1.75±0.24\Gamma_{\rm IBIS} = 1.75 \pm 0.24 between 20--200 keV. Swift also detected 3C 454.3 with a flux in the 0.3--10 keV energy band in the range (1.231.40)×102(1.23-1.40) \times 10^{-2} \phcmsec{} and a photon index in the range ΓXRT=1.561.73\Gamma_{\rm XRT} = 1.56-1.73. In the optical band, both WEBT and REM show an extremely variable behavior in the RR band. A correlation analysis based on the entire data set is consistent with no time-lags between the gamma-ray and the optical flux variations. Our simultaneous multifrequency observations strongly indicate that the dominant emission mechanism between 30 MeV and 30 GeV is dominated by inverse Compton scattering of relativistic electrons in the jet on the external photons from the broad line region.Comment: Accepted for publication in ApJ. Abridged Abstract. 37 pages, 14 Figures, 3 Table

    AGILE observation of a gamma-ray flare from the blazar 3C 279

    Get PDF
    Context. We report the detection by the AGILE satellite of an intense gamma-ray flare from the gamma-ray source 3EG J1255-0549, associated to the Flat Spectrum Radio Quasar 3C 279, during the AGILE pointings towards the Virgo Region on 2007 July 9-13. Aims. The simultaneous optical, X-ray and gamma-ray covering allows us to study the spectral energy distribution (SED) and the theoretical models relative to the flaring episode of mid-July. Methods. AGILE observed the source during its Science Performance Verification Phase with its two co-aligned imagers: the Gamma- Ray Imaging Detector (GRID) and the hard X-ray imager (Super-AGILE) sensitive in the 30 MeV - 50 GeV and 18 - 60 keV respectively. During the AGILE observation the source was monitored simultaneously in optical band by the REM telescope and in the X-ray band by the Swift satellite through 4 ToO observations. Results. During 2007 July 9-13 July 2007, AGILE-GRID detected gamma-ray emission from 3C 279, with the source at ~2 deg from the center of the Field of View, with an average flux of (210+-38) 10^-8 ph cm^-2 s^-1 for energy above 100 MeV. No emission was detected by Super-AGILE, with a 3-sigma upper limit of 10 mCrab. During the observation lasted about 4 days no significative gamma-ray flux variation was observed. Conclusions. The Spectral Energy Distribution is modelled with a homogeneous one-zone Synchrotron Self Compton emission plus the contributions by external Compton scattering of direct disk radiation and, to a lesser extent, by external Compton scattering of photons from the Broad Line Region.Comment: Accepted for publication in Astronomy and Astrophysic

    First AGILE Catalog of High Confidence Gamma-Ray Sources

    Get PDF
    We present the first catalog of high-confidence gamma-ray sources detected by the AGILE satellite during observations performed from July 9, 2007 to June 30, 2008. Catalogued sources are detected by merging all the available data over the entire time period. AGILE, launched in April 2007, is an ASI mission devoted to gamma-ray observations in the 30 MeV - 50 GeV energy range, with simultaneous X-ray imaging capability in the 18-60 keV band. This catalog is based on Gamma-Ray Imaging Detector (GRID) data for energies greater than 100 MeV. For the first AGILE catalog we adopted a conservative analysis, with a high-quality event filter optimized to select gamma-ray events within the central zone of the instrument Field of View (radius of 40 degrees). This is a significance-limited (4 sigma) catalog, and it is not a complete flux-limited sample due to the non-uniform first year AGILE sky coverage. The catalog includes 47 sources, 21 of which are associated with confirmed or candidate pulsars, 13 with Blazars (7 FSRQ, 4 BL Lacs, 2 unknown type), 2 with HMXRBs, 2 with SNRs, 1 with a colliding-wind binary system, 8 with unidentified sources.Comment: Revised version, 15 pages, 3 figures, 3 tables. To be published in Astronomy and Astrophysics. Text improved and clarified. Refined analysis of complex regions of the Galactic plane yields a new list of high-confidence sources including 47 sources (compared with the 40 sources appearing in the first version

    Search for anomalies in the neutrino sector with muon spectrometers and large LArTPC imaging detectors at CERN

    Full text link
    A new experiment with an intense ~2 GeV neutrino beam at CERN SPS is proposed in order to definitely clarify the possible existence of additional neutrino states, as pointed out by neutrino calibration source experiments, reactor and accelerator experiments and measure the corresponding oscillation parameters. The experiment is based on two identical LAr-TPCs complemented by magnetized spectrometers detecting electron and muon neutrino events at Far and Near positions, 1600 m and 300 m from the proton target, respectively. The ICARUS T600 detector, the largest LAr-TPC ever built with a size of about 600 ton of imaging mass, now running in the LNGS underground laboratory, will be moved at the CERN Far position. An additional 1/4 of the T600 detector (T150) will be constructed and located in the Near position. Two large area spectrometers will be placed downstream of the two LAr-TPC detectors to perform charge identification and muon momentum measurements from sub-GeV to several GeV energy range, greatly complementing the physics capabilities. This experiment will offer remarkable discovery potentialities, collecting a very large number of unbiased events both in the neutrino and antineutrino channels, largely adequate to definitely settle the origin of the observed neutrino-related anomalies.Comment: Contribution to the European Strategy for Particle Physics - Open Symposium Preparatory Group, Kracow 10-12 September 201
    corecore