107 research outputs found
Recommended from our members
Comparing Detection Capabilities of AntiVirus Products: An Empirical Study with Different Versions of Products from the Same Vendors
In this paper we report results of an empirical analysis of the detection capabilities of 9 AntiVirus (AV) products when they were subjected to 3605 malware samples collected on an experimental network over a period of 31 days in NovemberDecember 2013. We compared the detection capabilities of the version of the AV products that the vendors make available for free in VirusTotal versus the full capability products that they make available via their own website. The analysis has been done using externally observable properties of the AV products: namely whether they detect a given malware. The paper reports extensive analysis of the results. A surprising finding of our study was that only one of the vendors had a full capability version which detected all the malware that their VirusTotal version could detect
Level of auditory analysis, synthesis and active vocabulary and their intergender context : [Uroven sluchovej analyzy, syntezy a aktivna slovna zasoba a ich mezipohlavny kontext
The subject of our research were partial cognitive functions and phonematic awareness of preschool students. Following the findings, we focused on the identification of selected determinants of auditory analysis and synthesis, namely gender differences in the level of auditory analysis and active vocabulary of six-year-old children. Our aim was also to find out whether there is a difference in the level of auditory analysis and auditory synthesis in six-year-old
Feasibility of detecting atrophy relevant for disability and cognition in multiple sclerosis using 3D-FLAIR
BACKGROUND AND OBJECTIVES: Disability and cognitive impairment are known to be related to brain atrophy in multiple sclerosis (MS), but 3D-T1 imaging required for brain volumetrics is often unavailable in clinical protocols, unlike 3D-FLAIR. Here our aim was to investigate whether brain volumes derived from 3D-FLAIR images result in similar associations with disability and cognition in MS as do those derived from 3D-T1 images. METHODS: 3T-MRI scans of 329 MS patients and 76 healthy controls were included in this cross-sectional study. Brain volumes were derived using FreeSurfer on 3D-T1 and compared with brain volumes derived with SynthSeg and SAMSEG on 3D-FLAIR. Relative agreement was evaluated by calculating the intraclass correlation coefficient (ICC) of the 3D-T1 and 3D-FLAIR volumes. Consistency of relations with disability and average cognition was assessed using linear regression, while correcting for age and sex. The findings were corroborated in an independent validation cohort of 125 MS patients. RESULTS: The ICC between volume measured with FreeSurfer and those measured on 3D-FLAIR for brain, ventricle, cortex, total deep gray matter and thalamus was above 0.74 for SAMSEG and above 0.91 for SynthSeg. Worse disability and lower average cognition were similarly associated with brain (adj. R2 = 0.24-0.27, p < 0.01; adj. R2 = 0.26-0.29, p < 0.001) ventricle (adj. R2 = 0.27-0.28, p < 0.001; adj. R2 = 0.19-0.20, p < 0.001) and deep gray matter volumes (adj. R2 = 0.24-0.28, p < 0.001; adj. R2 = 0.27-0.28, p < 0.001) determined with all methods, except for cortical volumes derived from 3D-FLAIR. DISCUSSION: In this cross-sectional study, brain volumes derived from 3D-FLAIR and 3D-T1 show similar relationships to disability and cognitive dysfunction in MS, highlighting the potential of these techniques in clinical datasets
Ocrelizumab reduces cortical and deep grey matter loss compared to the S1P-receptor modulator in multiple sclerosis
Introduction: Ocrelizumab (OCR) and Fingolimod (FGL) are two high-efficacy treatments in multiple sclerosis which, besides their strong anti-inflammatory activity, may limit neurodegeneration. Aim: To compare the effect of OCR and FGL on clinical and MRI endpoints. Methods: 95 relapsing-remitting patients (57 OCR, 38 FGL) clinically followed for 36 months underwent a 3-Tesla MRI at baseline and after 24 months. The annualized relapse rate, EDSS, new cortical/white matter lesions and regional cortical and deep grey matter volume loss were evaluated. Results: OCR reduced the relapse rate from 0.48 to 0.04, FGL from 0.32 to 0.05 (both p < 0.001). Compared to FGL, OCR-group experienced fewer new white matter lesions (12% vs 32%, p = 0.005), no differences in new cortical lesions, lower deep grey matter volume loss (- 0.12% vs - 0.66%; p = 0.002, Cohen's d = 0.54), lower global cortical thickness change (- 0.45% vs - 0.70%; p = 0.036; d = 0.42) and reduced cortical thinning/volume loss in several regions of interests, including those of parietal gyrus (d-range = 0.65-0.71), frontal gyrus (d-range = 0.47-0.60), cingulate (d-range = 0.41-0.72), insula (d = 0.36), cerebellum (cortex d = 0.72, white matter d = 0.44), putamen (d = 0.35) and thalamus (d = 0.31). The effect on some regional thickness changes was confirmed in patients without focal lesions. Conclusions: When compared with FGL, patients receiving OCR showed greater suppression of focal MRI lesions accumulation and lower cortical and deep grey matter volume loss
Characterization of the genomic features and expressed fusion genes in micropapillary carcinomas of the breast
Micropapillary carcinoma ( MPC ) is a rare histological special type of breast cancer, characterized by an aggressive clinical behaviour and a pattern of copy number aberrations ( CNAs ) distinct from that of grade‐ and oestrogen receptor ( ER )‐matched invasive carcinomas of no special type ( IC‐NSTs ). The aims of this study were to determine whether MPCs are underpinned by a recurrent fusion gene(s) or mutations in 273 genes recurrently mutated in breast cancer. Sixteen MPCs were subjected to microarray‐based comparative genomic hybridization ( aCGH ) analysis and Sequenom OncoCarta mutation analysis. Eight and five MPCs were subjected to targeted capture and RNA sequencing, respectively. aCGH analysis confirmed our previous observations about the repertoire of CNAs of MPCs . Sequencing analysis revealed a spectrum of mutations similar to those of luminal B IC‐NSTs , and recurrent mutations affecting mitogen‐activated protein kinase family genes and NBPF10 . RNA ‐sequencing analysis identified 17 high‐confidence fusion genes, eight of which were validated and two of which were in‐frame. No recurrent fusions were identified in an independent series of MPCs and IC‐NSTs . Forced expression of in‐frame fusion genes ( SLC2A1–FAF1 and BCAS4–AURKA ) resulted in increased viability of breast cancer cells. In addition, genomic disruption of CDK12 caused by out‐of‐frame rearrangements was found in one MPC and in 13% of HER2 ‐positive breast cancers, identified through a re‐analysis of publicly available massively parallel sequencing data. In vitro analyses revealed that CDK12 gene disruption results in sensitivity to PARP inhibition, and forced expression of wild‐type CDK12 in a CDK12 ‐null cell line model resulted in relative resistance to PARP inhibition. Our findings demonstrate that MPCs are neither defined by highly recurrent mutations in the 273 genes tested, nor underpinned by a recurrent fusion gene. Although seemingly private genetic events, some of the fusion transcripts found in MPCs may play a role in maintenance of a malignant phenotype and potentially offer therapeutic opportunities. © 2014 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106752/1/path4325.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/106752/2/path4325-sup-0001-AppendixS1.pd
Phosphorylated Dihydroceramides from Common Human Bacteria Are Recovered in Human Tissues
Novel phosphorylated dihydroceramide (PDHC) lipids produced by the periodontal pathogen Porphyromonas gingivalis include phosphoethanolamine (PE DHC) and phosphoglycerol dihydroceramides (PG DHC) lipids. These PDHC lipids mediate cellular effects through Toll-like receptor 2 (TLR2) including promotion of IL-6 secretion from dendritic cells and inhibition of osteoblast differentiation and function in vitro and in vivo. The PE DHC lipids also enhance (TLR2)-dependent murine experimental autoimmune encephalomyelitis (EAE), a model for multiple sclerosis. The unique non-mammalian structures of these lipids allows for their specific quantification in bacteria and human tissues using multiple reaction monitoring (MRM)-mass spectrometry (MS). Synthesis of these lipids by other common human bacteria and the presence of these lipids in human tissues have not yet been determined. We now report that synthesis of these lipids can be attributed to a small number of intestinal and oral organisms within the Bacteroides, Parabacteroides, Prevotella, Tannerella and Porphyromonas genera. Additionally, the PDHCs are not only present in gingival tissues, but are also present in human blood, vasculature tissues and brain. Finally, the distribution of these TLR2-activating lipids in human tissues varies with both the tissue site and disease status of the tissue suggesting a role for PDHCs in human disease
- …