854 research outputs found

    Comparison of Pion-Kaon Scattering in SU(3) Chiral Perturbation Theory and Dispersion Relations

    Full text link
    We establish the framework for the comparison of πK\pi K scattering amplitudes from SU(3) chiral perturbation theory with suitable dispersive representations which result from the combination of certain fixed-t dispersion relations with dispersion relations on hyperbolic curves. This allows for predictions for some combinations of low energy constants appearing in higher order calculations of chiral perturbation theory. Using a simple parametrization for the lowest partial waves, first estimates for some combinations are presented.Comment: 20 pages, LaTeX2e; replaced with version to appear in European Physical Journal C; typographical errors removed, minor stylistic change

    Quantum Nondemolition Measurement of a Kicked Qubit

    Full text link
    We propose a quantum nondemolition measurement using a kicked two-state system (qubit). By tuning the waiting time between kicks to be the qubit oscillation period, the kicking apparatus performs a nondemolition measurement. While dephasing is unavoidable, the nondemolition measurement can (1) slow relaxation of diagonal density matrix elements, (2) avoid detector back-action, and (3) allow for a large signal-to-noise ratio. Deviations from the ideal behavior are studied by allowing for detuning of the waiting time, as well as finite-time, noisy pulses. The scheme is illustrated with a double-dot qubit measured by a gate-pulsed quantum point contact.Comment: 7 pages, 1 figur

    Time-Dependent Current Partition in Mesoscopic Conductors

    Full text link
    The currents at the terminals of a mesoscopic conductor are evaluated in the presence of slowly oscillating potentials applied to the contacts of the sample. The need to find a charge and current conserving solution to this dynamic current partition problem is emphasized. We present results for the electro-chemical admittance describing the long range Coulomb interaction in a Hartree approach. For multiply connected samples we discuss the symmetry of the admittance under reversal of an Aharonov-Bohm flux.Comment: 22 pages, 3 figures upon request, IBM RC 1971

    Low frequency admittance of a quantum point contact

    Full text link
    We present a current and charge conserving theory for the low frequency admittance of a quantum point contact. We derive expressions for the electrochemical capacitance and the displacement current. The latter is determined by the {\em emittance} which equals the capacitance only in the limit of vanishing transmission. With the opening of channels the capacitance and the emittance decrease in a step-like manner in synchronism with the conductance steps. For vanishing reflection, the capacitance vanishes and the emittance is negative.Comment: 11 pages, revtex file, 2 ps figure

    Optimal energy quanta to current conversion

    Full text link
    We present a microscopic discussion of a nano-sized structure which uses the quantization of energy levels and the physics of single charge Coulomb interaction to achieve an optimal conversion of heat flow to directed current. In our structure the quantization of energy levels and the Coulomb blockade lead to the transfer of quantized packets of energy from a hot source into an electric conductor to which it is capacitively coupled. The fluctuation generated transfer of a single energy quantum translates into the directed motion of a single electron. Thus in our structure the ratio of the charge current to the heat current is determined by the ratio of the charge quantum to the energy quantum. An important novel aspect of our approach is that the direction of energy flow and the direction of electron motion are decoupled.Comment: 9 pages, 6 figure

    Magnetic-field asymmetry of nonlinear mesoscopic transport

    Full text link
    We investigate departures of the Onsager relations in the nonlinear regime of electronic transport through mesoscopic systems. We show that the nonlinear current--voltage characteristic is not an even function of the magnetic field due only to the magnetic-field dependence of the screening potential within the conductor. We illustrate this result for two types of conductors: A quantum Hall bar with an antidot and a chaotic cavity connected to quantum point contacts. For the chaotic cavity we obtain through random matrix theory an asymmetry in the fluctuations of the nonlinear conductance that vanishes rapidly with the size of the contacts.Comment: 4 pages, 2 figures. Published versio

    Effect of incoherent scattering on shot noise correlations in the quantum Hall regime

    Full text link
    We investigate the effect of incoherent scattering in a Hanbury Brown and Twiss situation with electrons in edge states of a three-terminal conductor submitted to a strong perpendicular magnetic field. The modelization of incoherent scattering is performed by introducing an additional voltage probe through which the current is kept equal to zero which causes voltage fluctuations at this probe. It is shown that inelastic scattering can lead in this framework to positive correlations, whereas correlations remain always negative for quasi-elastic scattering.Comment: 5 pages latex, 5 eps figure

    Theory of conductance and noise additivity in parallel mesoscopic conductors

    Full text link
    We present a theory of conductance and noise in generic mesoscopic conductors connected in parallel, and we demonstrate that the additivity of conductance and of shot noise arises as a sole property of the junctions connecting the two (or more) conductors in parallel. Consequences on the functionality of devices based on the Aharonov-Bohm effect are also drawn.Comment: 4 pages, 2 figure

    Pion-Pion Scattering in Chiral Perturbation and Dispersion Relation Theories

    Get PDF
    Chiral perturbation theory, the low energy effective theory of the strong interactions for the light pseudoscalar degrees of freedom, is based on effective Lagrangian techniques and is an expansion in the powers of the external momenta and the powers of the quark masses, which correct the soft-pion theorems. Our primary emphasis will be on the problem of ππ\pi\pi scattering. After briefly reviewing these features and some results, we review some features of πN\pi-N scattering.Comment: Invited talk at the "Frontiers of Fundamental Physics" Symposium, B. M. Birla Science Centre, Hyderabad, India, December 30, 1998- January 1, 1999, Plain latex (to be run twice), 20 page

    Weakly nonlinear quantum transport: an exactly solvable model

    Get PDF
    We have studied the weakly non-linear quantum transport properties of a two-dimensional quantum wire which can be solved exactly. The non-linear transport coefficients have been calculated and interesting physical properties revealed. In particular we found that as the incoming electron energy approaches a resonant point given by energy E=ErE=E_r, where the transport is characterized by a complete reflection, the second order non-linear conductance changes its sign. This has interesting implications to the current-voltage characteristics. We have also investigated the establishment of the gauge invariance condition. We found that for systems with a finite scattering region, correction terms to the theoretical formalism are needed to preserve the gauge invariance. These corrections were derived analytically for this model.Comment: 15 pages, LaTeX, submitted to Phys. Rev.
    corecore