3 research outputs found

    Selective addressing of high-rank atomic polarization moments

    Get PDF
    We describe a method of selective generation and study of polarization moments of up to the highest rank κ=2F\kappa=2F possible for a quantum state with total angular momentum FF. The technique is based on nonlinear magneto-optical rotation with frequency-modulated light. Various polarization moments are distinguished by the periodicity of light-polarization rotation induced by the atoms during Larmor precession and exhibit distinct light-intensity and frequency dependences. We apply the method to study polarization moments of 87^{87}Rb atoms contained in a vapor cell with antirelaxation coating. Distinct ultra-narrow (1-Hz wide) resonances, corresponding to different multipoles, appear in the magnetic-field dependence of the optical rotation. The use of the highest-multipole resonances has important applications in quantum and nonlinear optics and in magnetometry.Comment: 5 pages, 6 figure

    Quantum trajectory approach to stochastically-induced quantum interference effects in coherently-driven two-level atoms

    Get PDF
    Stochastic perturbation of two-level atoms strongly driven by a coherent light field is analyzed by the quantum trajectory method. A new method is developed for calculating the resonance fluorescence spectra from numerical simulations. It is shown that in the case of dominant incoherent perturbation, the stochastic noise can unexpectedly create phase correlation between the neighboring atomic dressed states. This phase correlation is responsible for quantum interference between the related transitions resulting in anomalous modifications of the resonance fluorescence spectra.Comment: paper accepted for publicatio

    Resonance Fluorescence Spectrum of Two-Level Atoms Driven by Two Noncollinear Classical Fields

    No full text
    The resonance fluorescence spectrum of an ensemble of two-level atoms driven by two classical, frequency degenerate and noncollinear laser beams is investigated. It has been found that the spatially-averaged resonance fluorescence spectra differ significantly from the spectra of two-level atoms calculated for the single-beam excitation. The differences were noticed in the number of peaks, their positions and shapes and in their dependences on an angle between wave vectors of the incident beams
    corecore