39,409 research outputs found
Non-Extensive Quantum Statistics with Particle - Hole Symmetry
Based on Tsallis entropy and the corresponding deformed exponential function,
generalized distribution functions for bosons and fermions have been used since
a while. However, aiming at a non-extensive quantum statistics further
requirements arise from the symmetric handling of particles and holes
(excitations above and below the Fermi level). Naive replacements of the
exponential function or cut and paste solutions fail to satisfy this symmetry
and to be smooth at the Fermi level at the same time. We solve this problem by
a general ansatz dividing the deformed exponential to odd and even terms and
demonstrate that how earlier suggestions, like the kappa- and q-exponential
behave in this respect
Modification of nucleon properties in nuclear matter and finite nuclei
We present a model for the description of nuclear matter and finite nuclei,
and at the same time, for the study of medium modifications of nucleon
properties. The nucleons are described as nontopological solitons which
interact through the self-consistent exchange of scalar and vector mesons. The
model explicitly incorporates quark degrees of freedom into nuclear many-body
systems and provides satisfactory results on the nuclear properties. The
present model predicts a significant increase of the nucleon radius at normal
nuclear matter density. It is very interesting to see the nucleon properties
change from the nuclear surface to the nuclear interior.Comment: 22 pages, 10 figure
Accelerator measurement of the energy spectra of neutrons emitted in the interaction of 3-GeV protons with several elements
The application of time of flight techniques for determining the shapes of the energy spectra of neutrons between 20 and 400 MeV is discussed. The neutrons are emitted at 20, 34, and 90 degrees in the bombardment of targets by 3 GeV protons. The targets used are carbon, aluminum, cobalt, and platinum with cylindrical cross section. Targets being bombarded are located in the internal circulating beam of a particle accelerator
Light Fan Driven by a Relativistic Laser Pulse
When a relativistic laser pulse with a high photon density interacts with a specially tailored thin foil target, a strong torque is exerted on the resulting spiral-shaped foil plasma, or “light fan.” Because of its structure, the latter can gain significant orbital angular momentum (OAM), and the opposite OAM is imparted to the reflected light, creating a twisted relativistic light pulse. Such an interaction scenario is demonstrated by particle-in-cell simulation as well as analytical modeling, and should be easily verifiable in the laboratory. As an important characteristic, the twisted relativistic light pulse has a strong torque and ultrahigh OAM density
Application of density dependent parametrization models to asymmetric nuclear matter
Density dependent parametrization models of the nucleon-meson effective
couplings, including the isovector scalar \delta-field, are applied to
asymmetric nuclear matter. The nuclear equation of state and the neutron star
properties are studied in an effective Lagrangian density approach, using the
relativistic mean field hadron theory. It is known that the introduction of a
\delta-meson in the constant coupling scheme leads to an increase of the
symmetry energy at high density and so to larger neutron star masses, in a pure
nucleon-lepton scheme. We use here a more microscopic density dependent model
of the nucleon-meson couplings to study the properties of neutron star matter
and to re-examine the \delta-field effects in asymmetric nuclear matter. Our
calculations show that, due to the increase of the effective \delta coupling at
high density, with density dependent couplings the neutron star masses in fact
can be even reduced.Comment: 5 pages, 4 figure
- …