6,735 research outputs found
Excitation spectrum and instability of a two-species Bose-Einstein condensate
We numerically calculate the density profile and excitation spectrum of a
two-species Bose-Einstein condensate for the parameters of recent experiments.
We find that the ground state density profile of this system becomes unstable
in certain parameter regimes, which leads to a phase transition to a new stable
state. This state displays spontaneously broken cylindrical symmetry. This
behavior is reflected in the excitation spectrum: as we approach the phase
transition point, the lowest excitation frequency goes to zero, indicating the
onset of instability in the density profile. Following the phase transition,
this frequency rises again.Comment: 8 pages, 5 figures, uses REVTe
Finite-Temperature Study of Bose-Fermi Superfluid Mixtures
Ultra-cold atom experiments offer the unique opportunity to study mixing of
different types of superfluid states. Our interest is in superfluid mixtures
comprising particles with different statistics- Bose and Fermi. Such scenarios
occur naturally, for example, in dense QCD matter. Interestingly, cold atomic
experiments are performed in traps with finite spatial extent, thus critically
destabilizing the occurrence of various homogeneous phases. Critical to this
analysis is the understanding that the trapped system can undergo phase
separation, resulting in a unique situation where phase transition in either
species (bosons or fermions) can overlap with the phase separation between
possible phases. In the present work, we illustrate how this intriguing
interplay manifests in an interacting 2-species atomic mixture - one bosonic
and another fermionic with two spin components - within a realistic trap
configuration. We further show that such interplay of transitions can render
the nature of the ground state to be highly sensitive to the experimental
parameters and the dimensionality of the system.Comment: 9 pages, 7 figures; Accepted for publication in Phys. Rev.
Eliminating the mean-field shift in multicomponent Bose-Einstein condensates
We demonstrate that the nonlinear mean-field shift in a multi-component
Bose-Einstein condensate may be eliminated by controlling the two-body
interaction coefficients. This modification is achieved by, e.g., suitably
engineering the environment of the condensate. We consider as an example the
case of a two-component condensate in a tightly confining atom waveguide.
Modification of the atom-atom interactions is then achieved by varying
independently the transverse wave function of the two components. Eliminating
the density dependent phase shift in a high-density atomic beam has important
applications in atom interferometry and precision measurement
Phase separation of Bose-Einstein condensates
The zero-temperature system of two dilute overlapping Bose-Einstein
condensates is unstable against long wavelength excitations if the interaction
strength between the distinguishable bosons exceeds the geometric mean of the
like-boson interaction strengths. If the condensates attract each other, the
instability is similar to the instability of the negative scattering length
condensates. If the condensates repel, they separate spatially into condensates
of equal pressure. We estimate the boundary size, surface tension and energy of
the phase separated condensate system and we discuss the implications for
double condensates in atomic traps.Comment: 11 pages, 1 figur
Phonon spectrum and dynamical stability of a quantum degenerate Bose-Fermi mixture
We calculate the phonon excitation spectrum in a zero-temperature
boson-fermion mixture. We show how the sound velocity changes due to the
boson-fermion interaction and we determine the dynamical stability regime of a
homogeneous mixture. We identify a resonant phonon-exchange interaction between
the fermions as the physical mechanism leading to the instability.Comment: 4 pages, 3 figure
Two-fermion bound state in a Bose-Einstein condensate
A nonlinear Schr\"odinger equation is derived for the dynamics of a beam of
ultracold fermionic atoms traversing a Bose-Einstein condensate. The condensate
phonon modes are shown to provide a nonlinear medium for the fermionic atoms. A
two-fermion bound state is predicted to arise, and the signature of the bound
state in a nonlinear atom optics experiment is discussed.Comment: 4 pages, 1 figure
On Form Factors in nested Bethe Ansatz systems
We investigate form factors of local operators in the multi-component Quantum
Non-linear Schr\"odinger model, a prototype theory solvable by the so-called
nested Bethe Ansatz. We determine the analytic properties of the infinite
volume form factors using the coordinate Bethe Ansatz solution and we establish
a connection with the finite volume matrix elements. In the two-component
models we derive a set of recursion relations for the "magnonic form factors",
which are the matrix elements on the nested Bethe Ansatz states. In certain
simple cases (involving states with only one spin-impurity) we obtain explicit
solutions for the recursion relations.Comment: 34 pages, v2 (minor modifications
Symbiosis between the TRECVid benchmark and video libraries at the Netherlands Institute for Sound and Vision
Audiovisual archives are investing in large-scale digitisation efforts of their analogue holdings and, in parallel, ingesting an ever-increasing amount of born- digital files in their digital storage facilities. Digitisation opens up new access paradigms and boosted re-use of audiovisual content. Query-log analyses show the shortcomings of manual annotation, therefore archives are complementing these annotations by developing novel search engines that automatically extract information from both audio and the visual tracks. Over the past few years, the TRECVid benchmark has developed a novel relationship with the Netherlands Institute of Sound and Vision (NISV) which goes beyond the NISV just providing data and use cases to TRECVid. Prototype and demonstrator systems developed as part of TRECVid are set to become a key driver in improving the quality of search engines at the NISV and will ultimately help other audiovisual archives to offer more efficient and more fine-grained access to their collections. This paper reports the experiences of NISV in leveraging the activities of the TRECVid benchmark
Bogoliubov sound speed in periodically modulated Bose-Einstein condensates
We study the Bogoliubov excitations of a Bose-condensed gas in an optical
lattice. Of primary interest is the long wavelength phonon dispersion for both
current-free and current-carrying condensates. We obtain the dispersion
relation by carrying out a systematic expansion of the Bogoliubov equations in
powers of the phonon wave vector. Our result for the current-carrying case
agrees with the one recently obtained by means of a hydrodynamic theory.Comment: 16 pages, no figure
- âŚ