19 research outputs found

    Electrode erosion and lifetime performance of a compact and repetitively triggered field distortion spark gap switch

    Get PDF
    © 1973-2012 IEEE. The electrode erosion and lifetime performance of a compact and repetitively triggered field distortion spark gap switch were studied at a repetitive frequency rate of 30 Hz, a peak current of 8.5 kA, and a working voltage of ±35 kV when the switch was filled with a gas mixture of 30% SF6 and 70% N2 at a pressure of 0.3 MPa. The variations of the time-delay jitter and the self-breakdown voltage were both studied for the whole service lifetime of the spark gap switch. The morphology of both the electrodes and the plate insulator, before and after the service lifetime tests, is also analyzed. The results show that during these tests, the time-delay jitter is basically synchronized with the self-breakdown voltage jitter, and both undergo firstly a process of rapidly decreasing their values, then remaining stable, and finally and gradually increasing after 70 000 pulses. The change in the electrode surface roughness (i.e., surface profile) is caused by erosion and chemical deposits in the switch cavity, which are mainly the two factors that affect the time-delay jitter of the switch. Tip protrusions on the electrode surface, due to electrode erosion, contribute to reducing the time-delay jitter. However, due to chemical reactions, fluorides and sulfides are deposited on the switch components, as well as metal particles caused by electrode erosion sputtering. Slowly, after a large number of shots, all these phenomena affect the self-breakdown performance resulting in an increased self-breakdown voltage jitter, which also causes the time-delay jitter to increase. Although there are a number of reasons that contribute to the deterioration of the performance of the switch, it is fortunate that if a switch suffering a degraded performance is reassembled, with the electrodes mechanically polished and all the components cleaned, the optimal performance of the switch can be restored. If maintenance work is carried out regularly to preserve the condition of the switch's inner components, the service lifetime of the switch can be prolonged

    Semantics based decision model capacity evaluation and selection

    No full text
    The best method of decision model selection is based on fully understanding the meanings of decision problem and the capacities of decision model. Through domain ontology, decision problem and decision model are described in form of formal semantics which can be understood automatically by computer. Due to the understanding semantics of decision problem, DSS can extract the requirement of problem and select the corresponding model class which can solve the problem. Then, the capacities of candidate models are evaluated according to the semantics of decision models and eventually find out decision model which is the most completive one for the problem. Finally, the example analyzing and experiment show that the model selection method is effective and feasible

    Analytical test on effectiveness of MCDF operations

    No full text
    Modified conjugate directional filtering (MCDF) is a method proposed by Guo and Watson recently for digital data and image processing. By using MCDF, directionally filtered results in conjugate directions can be not only merged into one image that shows the maximum linear features in the two conjugate directions, but also further manipulated by a number of predefined generic MCDF operations for different purposes. Although a number of cases have been used to test the usefulness of several proposed MCDF operations, and the results are ‘visually’ better than some conventional methods, however, no quantified analytical results on its effectiveness have been obtained. This has been the major obstacle on the decision whether it is worth developing a usable MCDF system. This paper firstly outlines a FFT-based analytical design for conducting the tests, and then presents the results of applying this analytical design to the analysis of MCDF(add1) operation for an image of digital terrain model in central Australia. The test verifies that the MCDF(add1) operation indeed overcomes the two weaknesses of using the conventional directional filtering in image processing, i.e., separation in presentation of processed results in different directions, and significant loss in low-frequency components. Therefore, the MCDF method is worth for further development

    Divide-and-conquer large scale capacitated arc routing problems with route cutting off decomposition

    No full text
    The capacitated arc routing problem is a very important problem with many practical applications. This paper focuses on the large scale capacitated arc routing problem. Traditional solution optimization approaches usually fail because of their poor scalability. The divide-and-conquer strategy has achieved great success in solving large scale optimization problems by decomposing the original large problem into smaller sub-problems and solving them separately. For arc routing, a commonly used divide-and-conquer strategy is to divide the tasks into subsets, and then solve the sub-problems induced by the task subsets separately. However, the success of a divide-and-conquer strategy relies on a proper task division, which is non-trivial due to the complex interactions between the tasks. This paper proposes a novel problem decomposition operator, named the route cutting off operator, which considers the interactions between the tasks in a sophisticated way. To examine the effectiveness of the route cutting off operator, we integrate it with two state-of-the-art divide-and-conquer algorithms, and compared with the original counterparts on a wide range of benchmark instances. The results show that the route cutting off operator can improve the effectiveness of the decomposition, and lead to significantly better results especially when the problem size is very large and the time budget is very tight

    An efficient method for K-Means clustering

    No full text
    The existing K-Means clustering methods directly act on multidimensional datasets. Hence, these methods are extremely inefficient as the cardinality of input data and the number of clustering attributes increase. Motivated by the above fact, in this paper, an efficient approach for K-Means clustering based on the structure of regular grid, called KMCRG (K-Means Clustering based on Regular Grid), is proposed. This method effectively implements K-Means clustering by taking cell as handling object. Especially, this method uses the tactics of grid weighted iteration to effectively gain the final K classes. The experiment results show that the algorithm can quickly gain the clustering results without losing clustering precision

    Leader-following consensus of nonlinear multiagent systems with stochastic sampling

    No full text
    © 2016 IEEE.This paper is concerned with sampled-data leader-following consensus of a group of agents with nonlinear characteristic. A distributed consensus protocol with probabilistic sampling in two sampling periods is proposed. First, a general consensus criterion is derived for multiagent systems under a directed graph. A number of results in several special cases without transmittal delays or with the deterministic sampling are obtained. Second, a dimension-reduced condition is obtained for multiagent systems under an undirected graph. It is shown that the leader-following consensus problem with stochastic sampling can be transferred into a master-slave synchronization problem with only one master system and two slave systems. The problem solving is independent of the number of agents, which greatly facilitates its application to large-scale networked agents. Third, the network design issue is further addressed, demonstrating the positive and active roles of the network structure in reaching consensus. Finally, two examples are given to verify the theoretical results

    Regulation of hyperglycemia in diabetic mice by autolysates from β-mannanase-treated brewer's yeast

    No full text
    BACKGROUND: Diabetes mellitus is a serious chronic disease, characterized by hyperglycemia. This study administered either β-mannanase-treated yeast cell autolysis supernatant (YCS) or yeast cell-wall residues after autolysis (YCR) to investigate their influence on the alleviation of diabetes in a diabetic mouse model. RESULTS: Application of either YCS or YCR led to body weight gain, blood glucose reduction, and an improvement in lipid composition in the diabetic mice. Administration of YCS was more effective in inhibiting oxidative stress than YCR. The expression of PPARα and CPT1α was enhanced, improving lipid biosynthesis, and Trx1 and HIF-1-α genes were downregulated due to the activation of thioredoxin following the interventions, indicating that the processes of lipid metabolism and oxidative stress were heavily involved in the reduction of diabetic characteristics following the interventions. The current study revealed that consumption of YCR also led to a reduction in hyperglycemia, this being associated with its richness in mineral elements, such as chromium and selenium. CONCLUSION: This study may highlight the potential of both YCS and YCR as functional ingredients in dietary formula for improving diabetic syndromes. © 2019 Society of Chemical Industry. © 2019 Society of Chemical Industr

    Exceptional fatigue resistant NiTi wire mediated by R-phase

    No full text
    Ni50.2Ti49.8 and Ni50.9Ti49.1 wires in cold-drawn state were compared regarding tensile fatigue life and fatigue fracture mechanism. Through process control, Ni50.2Ti49.8 with R-phase matrix at room temperature was achieved in as-drawn state without post heat treatment. The R-phase imparts exceptional fatigue performance to Ni50.2Ti49.8 wire with fatigue life approximately twelve times of that for Ni50.9Ti49.1 which comprises B2 phase and a small amount of B19′ under the same test conditions. The cyclic phase transformation under loading initiates microcracks in phase boundaries, leading to premature fracture of Ni50.9Ti49.1. In contrast, the R-phase presents exceptional stability against fatigue failure upon cyclic loading

    Testing the standard fireball model of gamma-ray bursts using late X-ray afterglows measured by Swift

    Full text link
    We show that all X-ray decay curves of γ-ray bursts (GRBs) measured by Swift can be fitted using one or two components, both of which have exactly the same functional form comprised of an early falling exponential phase followed by a power-law decay. The first component contains the prompt γ-ray emission and the initial X-ray decay. The second component appears later, has a much longer duration, and is present for ≈80% of GRBs. It most likely arises from the external shock that eventually develops into the X-ray afterglow. In the remaining ≈20% of GRBs the initial X-ray decay of the first component fades more slowly than the second and dominates at late times to form an afterglow. The temporal decay parameters and γ/X-ray spectral indices derived for 107 GRBs are compared to the expectations of the standard fireball model including a search for possible "jet breaks." For ~50% of GRBs the observed afterglow is in accord with the model, but for the rest the temporal and spectral indices do not conform to the expected closure relations and are suggestive of continued, late, energy injection. We identify a few possible jet breaks, but there are many examples where such breaks are predicted but are absent. The time Ta at which the exponential phase of the second component changes to a final power-law decay afterglow is correlated with the peak of the γ-ray spectrum, Epeak. This is analogous to the Ghirlanda relation, indicating that this time is in some way related to optically observed break times measured for pre-Swift bursts
    corecore