9,193 research outputs found
Bayesian model selection for testing the no-hair theorem with black hole ringdowns
General relativity predicts that a black hole that results from the merger of
two compact stars (either black holes or neutron stars) is initially highly
deformed but soon settles down to a quiescent state by emitting a superposition
of quasi-normal modes (QNMs). The QNMs are damped sinusoids with characteristic
frequencies and decay times that depend only on the mass and spin of the black
hole and no other parameter - a statement of the no-hair theorem. In this paper
we have examined the extent to which QNMs could be used to test the no-hair
theorem with future ground- and space-based gravitational-wave detectors. We
model departures from general relativity (GR) by introducing extra parameters
which change the mode frequencies or decay times from their general
relativistic values. With the aid of numerical simulations and Bayesian model
selection, we assess the extent to which the presence of such a parameter could
be inferred, and its value estimated. We find that it is harder to decipher the
departure of decay times from their GR value than it is with the mode
frequencies. Einstein Telescope (ET, a third generation ground-based detector)
could detect departures of <1% in the frequency of the dominant QNM mode of a
500 Msun black hole, out to a maximum range of 4 Gpc. In contrast, the New
Gravitational Observatory (NGO, an ESA space mission to detect gravitational
waves) can detect departures of ~ 0.1% in a 10^8 Msun black hole to a
luminosity distance of 30 Gpc (z = 3.5).Comment: 9 pages, 5 figure
Model-independent test of gravity with a network of ground-based gravitational-wave detectors
The observation of gravitational waves with a global network of
interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will
make it possible to probe into the nature of space-time structure. Besides
Einstein's general theory of relativity, there are several theories of
gravitation that passed experimental tests so far. The gravitational-wave
observation provides a new experimental test of alternative theories of gravity
because a gravitational wave may have at most six independent modes of
polarization, of which properties and number of modes are dependent on theories
of gravity. This paper proposes a method to reconstruct the independent modes
of polarization in time-series data of an advanced detector network. Since the
method does not rely on any specific model, it gives model-independent test of
alternative theories of gravity
Novel algorithms for the characterization of n-port networks by using a two-port network analyzer
The measurement of the scattering matrices of n-port networks is an important task. For this purpose two ports of the n-port network are connected with the network analyzer and the remaining ports are connected to reflecting terminations. In order to specify the scattering matrix of a n-port network with the multi-port method (Rolfes et al., 2005), n reflecting terminations are required from which at least one reflection factor needs to be known. There are some cases, in which the multi-port method shows weak convergence properties. For example, a T-junction cannot be identified if the reflecting terminations used are short circuits and if the line length is equivalent to a multiple of a half wavelength. This is due to the fact that the two ports connected to the network analyzer become isolated. Two new algorithms, named the sub-determinant method and the wave-identification method, respectively, which employ a second set of reflection terminations that have to differ from the first set, allow to identify every n-port network without the necessity to distinguish different cases. Both methods are based on least square algorithms and allow to determine all scattering parameters of a n-port-network directly and uniquely
Singular value decomposition in parametrised tests of post-Newtonian theory
Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of
non-spinning compact binaries moving in circular orbits is fully characterized
by the two component masses. If two of these coefficients are independently
measured, the masses can be estimated. Future gravitational wave observations
could measure many of the 8 independent PN coefficients calculated to date.
These additional measurements can be used to test the PN predictions of the
underlying theory of gravity. Since all of these parameters are functions of
the two component masses, there is strong correlation between the parameters
when treated independently. Using Singular Value Decomposition of the Fisher
information matrix, we remove this correlations and obtain a new set of
parameters which are linear combinations of the original phasing coefficients.
We show that the new set of parameters can be estimated with significantly
improved accuracies which has implications for the ongoing efforts to implement
parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and
Quantum Gravity (Matches with the published version
Quantum phase shift and neutrino oscillations in a stationary, weak gravitational field
A new method based on Synge's world function is developed for determining
within the WKB approximation the gravitationally induced quantum phase shift of
a particle propagating in a stationary spacetime. This method avoids any
calculation of geodesics. A detailed treatment is given for relativistic
particles within the weak field, linear approximation of any metric theory. The
method is applied to the calculation of the oscillation terms governing the
interference of neutrinos considered as a superposition of two eigenstates
having different masses. It is shown that the neutrino oscillations are not
sensitive to the gravitomagnetic components of the metric as long as the spin
contributions can be ignored. Explicit calculations are performed when the
source of the field is a spherical, homogeneous body. A comparison is made with
previous results obtained in Schwarzschild spacetime.Comment: 14 pages, no figure. Enlarged version; added references. In the
Schwarzschild case, our results on the non-radial propagation are compared
with the previous work
Black holes in the low mass gap: Implications for gravitational wave observations
Binary neutron-star mergers will predominantly produce black-hole remnants of
mass , thus populating the putative \emph{low mass gap}
between neutron stars and stellar-mass black holes. If these low-mass black
holes are in dense astrophysical environments, mass segregation could lead to
"second-generation" compact binaries merging within a Hubble time. In this
paper, we investigate possible signatures of such low-mass compact binary
mergers in gravitational-wave observations. We show that this unique population
of objects, if present, will be uncovered by the third-generation
gravitational-wave detectors, such as Cosmic Explorer and Einstein Telescope.
Future joint measurements of chirp mass and effective spin
could clarify the formation scenario of compact objects in the
low mass gap. As a case study, we show that the recent detection of GW190425
(along with GW170817) favors a double Gaussian mass model for neutron stars,
under the assumption that the primary in GW190425 is a black hole formed from a
previous binary neutron star merger.Comment: 8 pages, 4 figures, 1 table. v4: matches the version accepted for
publication in Phys. Rev.
Latent solitons, black strings, black branes, and equations of state in Kaluza-Klein models
In Kaluza-Klein models with an arbitrary number of toroidal internal spaces,
we investigate soliton solutions which describe the gravitational field of a
massive compact object. We single out the physically interesting solution
corresponding to a point-like mass. For the general solution we obtain
equations of state in the external and internal spaces. These equations
demonstrate that the point-like mass soliton has dust-like equations of state
in all spaces. We also obtain the PPN parameters, which give the possibility to
obtain the formulas for perihelion shift, deflection of light and time delay of
radar echoes. Additionally, the gravitational experiments lead to a strong
restriction on the parameter of the model: . The point-like mass solution contradicts this restriction. The
condition satisfies the experimental limitation and defines a new
class of solutions which are indistinguishable from general relativity. We call
such solutions latent solitons. Black strings and black branes belong to this
class. Moreover, the condition of stability of the internal spaces singles out
black strings/branes from the latent solitons and leads uniquely to the black
string/brane equations of state , in the internal spaces and
to the number of the external dimensions . The investigation of
multidimensional static spherically symmetric perfect fluid with dust-like
equation of state in the external space confirms the above results.Comment: 8 pages, Revtex4, no figures, minor changes adde
- …
