9,193 research outputs found

    Bayesian model selection for testing the no-hair theorem with black hole ringdowns

    Full text link
    General relativity predicts that a black hole that results from the merger of two compact stars (either black holes or neutron stars) is initially highly deformed but soon settles down to a quiescent state by emitting a superposition of quasi-normal modes (QNMs). The QNMs are damped sinusoids with characteristic frequencies and decay times that depend only on the mass and spin of the black hole and no other parameter - a statement of the no-hair theorem. In this paper we have examined the extent to which QNMs could be used to test the no-hair theorem with future ground- and space-based gravitational-wave detectors. We model departures from general relativity (GR) by introducing extra parameters which change the mode frequencies or decay times from their general relativistic values. With the aid of numerical simulations and Bayesian model selection, we assess the extent to which the presence of such a parameter could be inferred, and its value estimated. We find that it is harder to decipher the departure of decay times from their GR value than it is with the mode frequencies. Einstein Telescope (ET, a third generation ground-based detector) could detect departures of <1% in the frequency of the dominant QNM mode of a 500 Msun black hole, out to a maximum range of 4 Gpc. In contrast, the New Gravitational Observatory (NGO, an ESA space mission to detect gravitational waves) can detect departures of ~ 0.1% in a 10^8 Msun black hole to a luminosity distance of 30 Gpc (z = 3.5).Comment: 9 pages, 5 figure

    Model-independent test of gravity with a network of ground-based gravitational-wave detectors

    Full text link
    The observation of gravitational waves with a global network of interferometric detectors such as advanced LIGO, advanced Virgo, and KAGRA will make it possible to probe into the nature of space-time structure. Besides Einstein's general theory of relativity, there are several theories of gravitation that passed experimental tests so far. The gravitational-wave observation provides a new experimental test of alternative theories of gravity because a gravitational wave may have at most six independent modes of polarization, of which properties and number of modes are dependent on theories of gravity. This paper proposes a method to reconstruct the independent modes of polarization in time-series data of an advanced detector network. Since the method does not rely on any specific model, it gives model-independent test of alternative theories of gravity

    Novel algorithms for the characterization of n-port networks by using a two-port network analyzer

    Get PDF
    The measurement of the scattering matrices of n-port networks is an important task. For this purpose two ports of the n-port network are connected with the network analyzer and the remaining ports are connected to reflecting terminations. In order to specify the scattering matrix of a n-port network with the multi-port method (Rolfes et al., 2005), n reflecting terminations are required from which at least one reflection factor needs to be known. There are some cases, in which the multi-port method shows weak convergence properties. For example, a T-junction cannot be identified if the reflecting terminations used are short circuits and if the line length is equivalent to a multiple of a half wavelength. This is due to the fact that the two ports connected to the network analyzer become isolated. Two new algorithms, named the sub-determinant method and the wave-identification method, respectively, which employ a second set of reflection terminations that have to differ from the first set, allow to identify every n-port network without the necessity to distinguish different cases. Both methods are based on least square algorithms and allow to determine all scattering parameters of a n-port-network directly and uniquely

    Singular value decomposition in parametrised tests of post-Newtonian theory

    Full text link
    Various coefficients of the 3.5 post-Newtonian (PN) phasing formula of non-spinning compact binaries moving in circular orbits is fully characterized by the two component masses. If two of these coefficients are independently measured, the masses can be estimated. Future gravitational wave observations could measure many of the 8 independent PN coefficients calculated to date. These additional measurements can be used to test the PN predictions of the underlying theory of gravity. Since all of these parameters are functions of the two component masses, there is strong correlation between the parameters when treated independently. Using Singular Value Decomposition of the Fisher information matrix, we remove this correlations and obtain a new set of parameters which are linear combinations of the original phasing coefficients. We show that the new set of parameters can be estimated with significantly improved accuracies which has implications for the ongoing efforts to implement parametrised tests of PN theory in the data analysis pipelines.Comment: 17 pages, 6 figures, Accepted for publication in Classical and Quantum Gravity (Matches with the published version

    Quantum phase shift and neutrino oscillations in a stationary, weak gravitational field

    Full text link
    A new method based on Synge's world function is developed for determining within the WKB approximation the gravitationally induced quantum phase shift of a particle propagating in a stationary spacetime. This method avoids any calculation of geodesics. A detailed treatment is given for relativistic particles within the weak field, linear approximation of any metric theory. The method is applied to the calculation of the oscillation terms governing the interference of neutrinos considered as a superposition of two eigenstates having different masses. It is shown that the neutrino oscillations are not sensitive to the gravitomagnetic components of the metric as long as the spin contributions can be ignored. Explicit calculations are performed when the source of the field is a spherical, homogeneous body. A comparison is made with previous results obtained in Schwarzschild spacetime.Comment: 14 pages, no figure. Enlarged version; added references. In the Schwarzschild case, our results on the non-radial propagation are compared with the previous work

    Black holes in the low mass gap: Implications for gravitational wave observations

    Get PDF
    Binary neutron-star mergers will predominantly produce black-hole remnants of mass 34M\sim 3-4\,M_{\odot}, thus populating the putative \emph{low mass gap} between neutron stars and stellar-mass black holes. If these low-mass black holes are in dense astrophysical environments, mass segregation could lead to "second-generation" compact binaries merging within a Hubble time. In this paper, we investigate possible signatures of such low-mass compact binary mergers in gravitational-wave observations. We show that this unique population of objects, if present, will be uncovered by the third-generation gravitational-wave detectors, such as Cosmic Explorer and Einstein Telescope. Future joint measurements of chirp mass M{\cal M} and effective spin χeff\chi_{\rm eff} could clarify the formation scenario of compact objects in the low mass gap. As a case study, we show that the recent detection of GW190425 (along with GW170817) favors a double Gaussian mass model for neutron stars, under the assumption that the primary in GW190425 is a black hole formed from a previous binary neutron star merger.Comment: 8 pages, 4 figures, 1 table. v4: matches the version accepted for publication in Phys. Rev.

    Latent solitons, black strings, black branes, and equations of state in Kaluza-Klein models

    Full text link
    In Kaluza-Klein models with an arbitrary number of toroidal internal spaces, we investigate soliton solutions which describe the gravitational field of a massive compact object. We single out the physically interesting solution corresponding to a point-like mass. For the general solution we obtain equations of state in the external and internal spaces. These equations demonstrate that the point-like mass soliton has dust-like equations of state in all spaces. We also obtain the PPN parameters, which give the possibility to obtain the formulas for perihelion shift, deflection of light and time delay of radar echoes. Additionally, the gravitational experiments lead to a strong restriction on the parameter of the model: τ=(2.1±2.3)×105\tau = -(2.1\pm 2.3)\times 10^{-5}. The point-like mass solution contradicts this restriction. The condition τ=0\tau=0 satisfies the experimental limitation and defines a new class of solutions which are indistinguishable from general relativity. We call such solutions latent solitons. Black strings and black branes belong to this class. Moreover, the condition of stability of the internal spaces singles out black strings/branes from the latent solitons and leads uniquely to the black string/brane equations of state pi=ϵ/2p_i=-\epsilon/2, in the internal spaces and to the number of the external dimensions d0=3d_0=3. The investigation of multidimensional static spherically symmetric perfect fluid with dust-like equation of state in the external space confirms the above results.Comment: 8 pages, Revtex4, no figures, minor changes adde
    corecore