782 research outputs found

    Do Quasars Lens Quasars?

    Get PDF
    If the unexpectedly high frequency of quasar pairs with very different component redshifts is due to the lensing of a population of background quasars by the foreground quasar, typical lens masses must be \sim10^{12}M_{\sun} and the sum of all such quasar lenses would have to contain 0.005\sim0.005 times the closure density of the Universe. It then seems plausible that a very high fraction of all \sim10^{12} M_{\sun} gravitational lenses with redshifts z1z\sim1 contain quasars. Here I propose that these systems have evolved to form the present population of massive galaxies with MB22_{\rm B}\leq-22 and M >5\times10^{11} M_{\sun}.Comment: 6 pages, aas style, ams symbols, ApJL (accepted

    Colloidal Gels: Equilibrium and Non-Equilibrium Routes

    Get PDF
    We attempt a classification of different colloidal gels based on colloid-colloid interactions. We discriminate primarily between non-equilibrium and equilibrium routes to gelation, the former case being slaved to thermodynamic phase separation while the latter is individuated in the framework of competing interactions and of patchy colloids. Emphasis is put on recent numerical simulations of colloidal gelation and their connection to experiments. Finally we underline typical signatures of different gel types, to be looked in more details in experiments.Comment: topical review, accepted in J. Phys. Condens. Matte

    Broad P V Absorption in the BALQSO, PG 1254+047: Column Densities, Ionizations and Metal Abundances in BAL Winds

    Full text link
    This paper discusses the detection of P V 1118,1128 and other broad absorption lines (BALs) in archival HST spectra of the low-redshift BALQSO, PG 1254+047. The P V identification is secured by excellent redshift and profile coincidences with the other BALs, such as C IV 1548,1550 and Si IV 1393,1403, and by photoionization calculations showing that other lines near this wavelength, e.g. Fe III 1123, should be much weaker than P V. The observed BAL strengths imply that either 1) there are extreme abundance ratios such as [C/H] >~ +1.0, [Si/H] >~ +1.8 and [P/C] >~ +2.2, or 2) at least some of the lines are much more optically thick than they appear. I argue that the significant presence of P V absorption indicates severe line saturation, which is disguised in the observed (moderate-strength) BALs because the absorber does not fully cover the continuum source(s) along our line(s) of sight. Computed optical depths for all UV resonance lines show that the observed BALs are consistent with solar abundances if 1) the ionization parameter is at least moderately high, log U >~ -0.6, 2) the total hydrogen column density is log N_H(cm-2) >~ 22.0, and 3) the optical depths in strong lines like C IV and O VI 1032,1038 are >~25 and >~80, respectively. These optical depths and column densities are at least an order of magnitude larger than expected from the residual intensities in the BAL troughs, but they are consistent with the large absorbing columns derived from X-ray observations of BALQSOs. The outflowing BALR, at velocities from -15,000 to -27,000 km/s in PG 1254+047, is therefore a strong candidate for the X-ray absorber in BALQSOs.Comment: 16 pages (LaTeX) plus 8 pages of figures in one file (pg1254_figs.ps.gz), in press with Ap

    Spatial Variability in the Ratio of Interstellar Atomic Deuterium to Hydrogen. I. Observations toward delta Orionis by the Interstellar Medium Absorption Profile Spectrograph

    Full text link
    Studies of the abundances of deuterium in different astrophysical sites are of fundamental importance to answering the question about how much deuterium was produced during big bang nucleosynthesis and what fraction of it was destroyed later. With this in mind, we used the Interstellar Medium Absorption Profile Spectrograph (IMAPS) on the ORFEUS-SPAS II mission to observe at a wavelength resolution of 4 km/s (FWHM) the L-delta and L-epsilon absorption features produced by interstellar atomic deuterium in the spectrum of delta Ori A. A chi-square analysis indicated that 0.96 < N(D I)< 1.45e15 cm^{-2} at a 90% level of confidence, and the gas is at a temperature of about 6000K. To obtain an accurate value of N(H I) needed for a determination of the atomic ratio of D to H, we measured the L-alpha absorption features in 57 spectra of delta Ori in the IUE archive. From our measurement of N(H I)= 1.56e20 cm^{-2}, we found that N(D I)/N(H I)= 7.4(+1.9,-1.3)e-6 (90% confidence). Our result for D/H contrasts with the more general finding along other lines of sight that D/H is approximately 1.5e-5. The underabundance of D toward delta Ori A is not accompanied by an overabundance of N or O relative to H, as one might expect if the gas were subjected to more stellar processing than usual.Comment: 37 pages, 6 figures. Submitted to the Astrophysical Journa

    The Ionized Gas and Nuclear Environment in NGC 3783 V. Variability and Modeling of the Intrinsic Ultraviolet Absorption

    Full text link
    We present results on the location, physical conditions, and geometry of the outflow in the Seyfert 1 galaxy NGC 3783 from a study of the variable intrinsic UV absorption. Based on 18 observations with HST/STIS and 6 observations with FUSE, we find: 1) The absorption from the lowest-ionization species in each of the three strong kinematic components varied inversely with the continuum flux, indicating the ionization structure responded to changes in the photoionizing flux over the weekly timescales sampled by our observations. 2) A multi- component model with an unocculted NLR and separate BLR and continuum line-of-sight covering factors predicts saturation in several lines, consistent with the lack of observed variability. 3) Column densities for the individual metastable levels are measured from the resolved C III *1175 absorption complex observed in one component. Based on our computed metastable level populations, the electron density of this absorber is ~3x10^4 cm^-3. Photoionization modeling results place it at ~25 pc from the central source. 4) Using time-dependent calculations, we are able to reproduce the detailed variability observed in this absorber, and derive upper limits on the distances for the other components of 25-50 pc. 5) The ionization parameters derived for the higher ionization UV absorbers are consistent with the modeling results for the lowest-ionization X-ray component, but with smaller total column density. They have similar pressures as the three X-ray ionization components. These results are consistent with an inhomogeneous wind model for the outflow in NGC 3783. 6) Based on the predicted emission-line luminosities, global covering factor constraints, and distances derived for the UV absorbers, they may be identified with emission- line gas observed in the inner NLR of AGNs. (abridged)Comment: 30 pages, 18 figures (7 color), emulateapj, accepted for publication in The Astrophysical Journa

    Participatory Budgeting: Diffusion and Outcomes across the World

    Get PDF
    In this special issue of the Journal of Public Deliberation, multiple faces of Participatory Budgeting programs are revealed. The articles demonstrate that there is no standardized set of “best practices” that governments are adopting, but there are a broader set of principles that are adapted by local governments to meet local circumstances. Adopt and adapt appears to be the logic behind many PB programs

    The Nucleon-Nucleon Interaction in the Chromo-Dielectric Soliton Model: Dynamics

    Get PDF
    The present work is an extension of a previous study of the nucleon-nucleon interaction based on the chromo-dielectric soliton model. The former approach was static, leading to an adiabatic potential. Here we perform a dynamical study in the framework of the Generator Coordinate Method. In practice, we derive an approximate Hill-Wheeler differential equation and obtain a local nucleon-nucleon potential as a function of a mean generator coordinate. This coordinate is related to an effective separation distance between the two nucleons by a Fujiwara transformation. This latter relationship is especially useful in studying the quark substructure of light nuclei. We investigate the explicit contribution of the one-gluon exchange part of the six-quark Hamiltonian to the nucleon-nucleon potential, and we find that the dynamics are responsible for a significant part of the short-range N-N repulsion.Comment: 16 pages (REVTEX), 6 figures (uuencoded Postscript) optionally included using epsfig.st

    VLT + UVES Spectroscopy of the Low-Ionization Intrinsic Absorber in SDSS J001130.56+005550.7

    Full text link
    We analyse high-resolution VLT+UVES spectra of the low-ionization intrinsic absorber observed in the BAL QSO SDSS J001130.56+005550.7. Two narrow absorption systems at velocities -600 km/s and -22000 km/s are detected. The low-velocity system is part of the broad absorption line (BAL), while the high-velocity one is well detached. While most narrow absorption components are only detected in the high-ionization species, the lowest velocity component is detected in both high- and low-ionization species, including in the excited SiII* and CII* lines. From the analysis of doublet lines, we find that the narrow absorption lines at the low-velocity end of the BAL trough are completely saturated but do not reach zero flux, their profiles being dominated by a velocity-dependent covering factor. The covering factor is significantly smaller for MgII than for SiIV and NV, which demonstrates the intrinsic nature of absorber. From the analysis of the excited SiII* and CII* lines in the lowest velocity component, we find an electron density ~ 1000 cm^{-3}. Assuming photoionization equilibrium, we derive a distance ~ 20 kpc between the low-ionization region and the quasar core. The correspondence in velocity of the high- and low-ionization features suggests that all these species must be closely associated, hence formed at the same distance of ~ 20 kpc, much higher than the distance usually assumed for BAL absorbers.Comment: Accepted for publication in A&

    The evolution of ultraviolet emission lines from the circumstellar material surrounding SN 1987A

    Get PDF
    The presence of narrow high-temperature emission lines from nitrogen-rich gas close to SN 1987A has been the principal observational constraint on the evolu- tionary status of the supernova's progenitor. A new analysis of the complete five-year set of low and high resolution IUE ultraviolet spectra of SN 1987A (1987.2--1992.3) provide fluxes for the N V 1240, N IV] 1486, He II 1640, OIII] 1665, NIII] 1751, and CIII] 1908 lines with significantly reduced random and systematic errors and reveals significant short-term fluctuations in the light curves. The N V, N IV] and N III] lines turn on sequentially over 15 to 20 days and show a progression from high to low ionization potential, implying an ioni- zation gradient in the emitting region. The line emission turns on suddenly at 83+/-4 days after the explosion, as defined by N IV]. The N III] line reaches peak luminosity at 399+/-15 days. A ring radius of (6.24+/-0.20)E{17} cm and inclination of 41.0+/-3.9 is derived from these times, assuming a circular ring. The probable role of resonant scattering in the N V light curve introduces systematic errors that leads us to exclude this line from the timing analysis. A new nebular analysis yields improved CNO abundance ratios N/C=6.1+/-1.1 and N/O=1.7+/-0.5, confirming the nitrogen enrichment found in our previous paper. From the late-time behavior of the light curves we find that the emission origi- nates from progressively lower density gas. We estimate the emitting mass near maximum (roughly 400 days) to be roughly 4.7E{-2} solar masses, assuming a filling factor of unity and an electron density of 2.6E4 cm^{-3}. These results are discussed in the context of current models for the emission and hydrodynamics of the ring.Comment: 38 pages, AASTeX v.4.0, 13 Postscript figures; ApJ, in pres

    Limits on Active-Sterile Neutrino Mixing and the Primordial Deuterium Abundance

    Get PDF
    Studies of limits on active-sterile neutrino mixing derived from big bang nucleosynthesis considerations are extended to consider the dependance of these constraints on the primordial deuterium abundance. This study is motivated by recent measurements of D/H in quasar absorption systems, which at present yield discordant results. Limits on active-sterile mixing are somewhat relaxed for high D/H. For low D/H (2×105\approx 2 \times 10^{-5}), no active-sterile neutrino mixing is allowed by currently popular upper limits on the primordial 4^4He abundance YY. For such low primordial D/H values, the observational inference of active-sterile neutrino mixing by upcoming solar neutrino experiments would imply that YY has been systematically underestimated, unless there is new physics not included in standard BBN.Comment: 10 pages + 2 figures, uses revtex macros, submitted to Phys. Rev. D. Corrected figure captions and an added referenc
    corecore