1,333 research outputs found
Sustainable Livelihood and Sustainable Development: the Experience of Collective Farming by Kudumbashree in Keralam, India
One of the most alarming impacts of development experienced by Third world economies in the contemporary era of globalization is the fast depletion of agricultural land. This is especially so in countries in the Third world where the rapidly increasing population and unplanned growth of economies have decreased the size of croplands to highly threatened levels. There has also been a significant shift in the meaning of land in several of these locations to being an object that can be sold and bought like any other commodity. One dangerous outcome of this was that most of the land thus sold was fertile paddy fields, which play a central role in ground water conservation as well as in sustaining its rich biodiversity. The changing equations over land and its utility have considerably contributed to the changing ecological balances within the region. The need to reinvent sustainable forms of development specific to the conditions of the state was felt acutely amidst such transformations. There was a sudden demand to reinvent the productive capacity of land, especially paddy fields, in the state by both involving more people in this area as well as by resuming farming in land that otherwise remain fallow waiting for real estate agents. Kudumbasree was an organization that commenced its operations in the State in 1998 with the intention of engaging in women empowerment and poverty alleviation programmes. Its successful career has motivated its workers, basically housewives and women from different walks, to focus on non-traditional sectors in the state. As part of this, Kudumbashree started to intervene in the agriculture sector in 2002 with the objective of ensuring sustainable livelihood to poor families by bringing back fallow land to cultivation and women to agriculture. This was the context against which the idea of collective farming was introduced by the organisation. This not only ensured a new, albeit unconventional, and sustainable source of livelihood for women in the community but also has been considerably contributing to food and nutritional security of the state. This has literally revolutionized the development concepts in the society where women empowerment and livelihood programmes were combined to reinvent the idea of sustainability
Alternative mechanisms of structuring biomembranes: Self-assembly vs. self-organization
We study two mechanisms for the formation of protein patterns near membranes
of living cells by mathematical modelling. Self-assembly of protein domains by
electrostatic lipid-protein interactions is contrasted with self-organization
due to a nonequilibrium biochemical reaction cycle of proteins near the
membrane. While both processes lead eventually to quite similar patterns, their
evolution occurs on very different length and time scales. Self-assembly
produces periodic protein patterns on a spatial scale below 0.1 micron in a few
seconds followed by extremely slow coarsening, whereas self-organization
results in a pattern wavelength comparable to the typical cell size of 100
micron within a few minutes suggesting different biological functions for the
two processes.Comment: 4 pages, 5 figure
Blood-brain barrier-associated pericytes internalize and clear aggregated amyloid-β42 by LRP1-dependent apolipoprotein E isoform-specific mechanism
Table S1. Demographic and clinical features of human subjects used in this study. Figure S1. Aβ deposition in microvessels in AD patients and APPSw/0 mice. Figure S2. Biochemical analysis of Aβ42 aggregates. Figure S3. Cy3-Aβ42 cellular uptake in wild type mouse brain slices within 30 min. Figure S4. Pericyte coverages in Lrp1lox/lox and Lrp1lox/lox; Cspg4-Cre mice. Figure S5.. LRP1 and apoE suppression with siRNA. (DOCX 1454 kb
Effect of photoperiod and host distribution on the horizontal transmission of Isaria fumosorosea (Hypocreales: Cordycipitaceae) in greenhouse whitefly assessed using a novel model bioassay
A model bioassay was used to evaluate the epizootic potential and determine the horizontal transmission efficiency of Isaria fumosorosea Trinidadian strains against Trialeurodes vaporariorum pharate adults under optimum conditions (25±0.5°C, ~100% RH) at two different photoperiods. Untreated pharate adults were arranged on laminated graph paper at different distributions to simulate varying infestation levels on a leaf surface. Four potential hosts were located 7, 14 and 21 mm away from a central sporulating cadaver simulating high, medium and low infestation levels, respectively. Percent hosts colonized were recorded 7, 12, 14 and 21 days post-treatment during a 16- and 24-h photophase. After 21 days, mean percent hosts colonized at the highest, middle and lowest infestation levels were 93 and 100%, 22 and 58%, 25 and 39% under a 16- and 24-h photophase, respectively. From the results, it was concluded that the longer the photophase, the greater the percentage of hosts colonized, and as host distance increased from the central sporulating cadaver, colonization decreased. The use of this novel model bioassay technique is the first attempt to evaluate the epizootic potential and determine the horizontal transmission efficiency of I. fumosorosea Trinidadian strains under optimal environmental conditions at different photoperiods. This bioassay can be used to assess horizontal transmission efficiency for the selection of fungi being considered for commercial biopesticide development
Heparan sulfate proteoglycans mediate Aβ-induced oxidative stress and hypercontractility in cultured vascular smooth muscle cells
HSPG mitigates Aβ1-40-induced mitochondrial and cytosolic ROS production in VSMC under physiological oxygen concentration. To determine if differing levels oxygen impact ROS production in Aβ1-40 treated VSMC, cells were kept in 10 % oxygen (Panel A) or 1 % oxygen (conditions that are considered hypoxic; Panel B) in cell culture incubator with % 5 CO2. Primary human cerebral VSMC were pre-treated with heparin (15 U/mL), heparinase I (HpnI; 5 Sigma U/mL), or heparinase III (HpnIII; 2 Sigma U/mL) for 2 h, washed, loaded with Mitotracker Red CM-H2XRos, washed, and treated with Aβ1-40. In some cases, cells were pre-treated with heat-inactivated (HI) enzyme. Fluorescence was measured after 30 minutes. Results are representative of 3 independent experiments performed in triplicate. *p < 0.05 vs. vehicle-treated control. #p < 0.05 vs. comparison group. (JPEG 70 kb
Syntheses, structure, reactivity and species recognition studies of oxo-vanadium(V) and -molybdenum(VI) complexes
Alkoxo-rich Schiff-bases of potentially tri-, tetra- and penta-dentate binding capacity, and their sodium tetrahydroborate-reduced derivatives, have been synthesized. Their oxo-vanadium(V) and -molybdenum(VI) complexes were synthesized and characterized using several analytical and spectral techniques including multinuclear NMR spectroscopy and single-crystal X-ray diffraction studies. Eight structurally different types of complexes possessing distorted square-pyramidal, trigonal-bipyramidal and octahedral geometries have been obtained. While (VO)-O-V exhibits dimeric Structures with 2-HOC6H4CH=NC(CH2OH)(3) and 2-HOC6H4CH2-NHC(CH2OH)(3) and related ligands through the formation of a symmetric V2O2 core as a result of bridging of one of the CH2O- groups, Mo O-VI gives only mononuclear complexes even when some unbound CH2OH groups are available and the metal center is co-ordinatively unsaturated. In all the complexes the nitrogen atom from a HC=N or H2CNH group of the ligand occupies a near trans position to the M=O bond. While the Schiff-base ligands act in a tri- and tetra-dentate manner in the vanadium(V) complexes, they are only tridentate in the molybdenum(VI) complexes. Proton NMR spectra in the region of bound CH, provides a signature that helps to differentiate dinuclear from mononuclear complexes. Carbon-13 NMR co-ordination induced shifts of the bound CH, group fit well with the charge on the oxometal species and the terminal or bridging nature of the ligand. The reactivity of the vanadium(V) complexes towards bromination of the dye xylene cyanole was studied. Transmetallation reactions of several preformed metal complexes of 2-HOC6H4CH=NC(CH2OH)(3) with VO3+ were demonstrated as was selective extraction of VO3+ from a mixture of VO(acac)(2)] and MoO2(acac)(2)] using this Schiff base. The unusual selectivity and that of related derivatives for VO3+ is supported by binding constants and the solubility of the final products, and was established through a.c. conductivity measurements. The cis-MoO22+ complexes with alkoxo binding showed an average Mo-O-alk distance of 1.926 Angstrom, a value that is close to that observed in the molybdenum(VI) enzyme dmso reductase (1.92 Angstrom). Several correlations have been drawn based on the data
Critical role of astroglial apolipoprotein E and liver X receptor-α expression for microglial Aβ phagocytosis
Liver X receptors (LXRs) regulate immune cell function and cholesterol metabolism, both factors that are critically involved in Alzheimer's disease (AD). To investigate the therapeutic potential of long-term LXR activation in amyloid-β (Aβ) peptide deposition in an AD model, 13-month-old, amyloid plaque-bearing APP23 mice were treated with the LXR agonist TO901317. Postmortem analysis demonstrated that TO901317 efficiently crossed the blood–brain barrier. Insoluble and soluble Aβ levels in the treated APP23 mice were reduced by 80% and 40%, respectively, compared with untreated animals. Amyloid precursor protein (APP) processing, however, was hardly changed by the compound, suggesting that the observed effects were instead mediated by Aβ disposal. Despite the profound effect on Aβ levels, spatial learning in the Morris water maze was only slightly improved by the treatment. ABCA1 (ATP-binding cassette transporter 1) and apolipoprotein E (ApoE) protein levels were increased and found to be primarily localized in astrocytes. Experiments using primary microglia demonstrated that medium derived from primary astrocytes exposed to TO901317 stimulated phagocytosis of fibrillar Aβ. Conditioned medium from TO901317-treated ApoE−/−or LXRα−/−astrocytes did not increase phagocytosis of Aβ. In APP23 mice, long-term treatment with TO901317 strongly increased the association of microglia and Aβ plaques. Short-term treatment of APP/PS1 mice with TO901317 also increased this association, which was dependent on the presence of LXRα and was accompanied by increased ApoE lipidation. Together, these data suggest that astrocytic LXRα activation and subsequent release of ApoE by astrocytes is critical for the ability of microglia to remove fibrillar Aβ in response to treatment with TO901317.</jats:p
Glymphatic distribution of CSF-derived apoE into brain is isoform specific and suppressed during sleep deprivation
Sleep deprivation reduces the dextran radial distribution and 125I-apoE inflow from CSF into brain. A-B) Representative images of cascade blue dextran (CB) in mice on normal sleep cycle (A) and in mice during sleep deprivation (SD) (B). Cascade blue dextran (10 kDa) was injected into cisterna magna and the mice perfusion fixed (PFA) at 15 min. The vasculature was outline by lectin (green). Scale bars 100 μm (A-B). C) 125I-ApoE2 (yellow column), 125I-apoE3 (red column) and 125I-apoE4 (orange column) inflow into brain from the CSF were reduced in SD mice. D) 14C-inulin inflow into brain from the CSF was reduced with SD and not affected by apoE isoforms. 125I-ApoE (10 nM) and 14C-inulin were intracisternally injected and the brain analyzed for radioactivity. Values are mean ± SEM. N = 6 mice per group. (EPS 15099 kb
Examining links between anxiety, reinvestment and walking when talking by older adults during adaptive gait
Falls by older adults often result in reduced quality of life and debilitating fear of further falls. Stopping walking when talking (SWWT) is a significant predictor of future falls by older adults and is thought to reflect age-related increases in attentional demands of walking. We examine whether SWWT is associated with use of explicit movement cues during locomotion, and evaluate if conscious control (i.e., movement specific reinvestment) is causally linked to falls-related anxiety during a complex walking task. We observed whether twenty-four older adults stopped walking when talking when asked a question during an adaptive gait task. After certain trials, participants completed a visual-spatial recall task regarding walkway features, or answered questions about their movements during the walk. In a subsequent experimental condition, participants completed the walking task under conditions of raised postural threat. Compared to a control group, participants who SWWT reported higher scores for aspects of reinvestment relating to conscious motor processing but not movement self-consciousness. The higher scores for conscious motor processing were preserved when scores representing cognitive function were included as a covariate. There were no group differences in measures of general cognitive function, visual spatial working memory or balance confidence. However, the SWWT group reported higher scores on a test of external awareness when walking, indicating allocation of attention away from task-relevant environmental features. Under conditions of increased threat, participants self-reported significantly greater state anxiety and reinvestment and displayed more accurate responses about their movements during the task. SWWT is not associated solely with age-related cognitive decline or generic increases in age-related attentional demands of walking. SWWT may be caused by competition for phonological resources of working memory associated with consciously processing motor actions and appears to be causally linked with fall-related anxiety and increased vigilance.This research was supported by The Royal Society (IE131576) and British Academy (SG132820)
In vivo measurement of apolipoprotein E from the brain interstitial fluid using microdialysis
BACKGROUND: The APOE4 allele variant is the strongest known genetic risk factor for developing late-onset Alzheimer’s disease. The link between apolipoprotein E (apoE) and Alzheimer’s disease is likely due in large part to the impact of apoE on the metabolism of amyloid β (Aβ) within the brain. Manipulation of apoE levels and lipidation within the brain has been proposed as a therapeutic target for the treatment of Alzheimer’s disease. However, we know little about the dynamic regulation of apoE levels and lipidation within the central nervous system. We have developed an assay to measure apoE levels in the brain interstitial fluid of awake and freely moving mice using large molecular weight cut-off microdialysis probes. RESULTS: We were able to recover apoE using microdialysis from human cerebrospinal fluid (CSF) in vitro and mouse brain parenchyma in vivo. Microdialysis probes were inserted into the hippocampus of wild-type mice and interstitial fluid was collected for 36 hours. Levels of apoE within the microdialysis samples were determined by ELISA. The levels of apoE were found to be relatively stable over 36 hours. No apoE was detected in microdialysis samples from apoE KO mice. Administration of the RXR agonist bexarotene increased ISF apoE levels while ISF Aβ levels were decreased. Extrapolation to zero-flow analysis allowed us to determine the absolute recoverable concentration of apoE3 in the brain ISF of apoE3 KI mice. Furthermore, analysis of microdialysis samples by non-denaturing gel electrophoresis determined lipidated apoE particles in microdialysis samples were consistent in size with apoE particles from CSF. Finally, we found that the concentration of apoE in the brain ISF was dependent upon apoE isoform in human apoE KI mice, following the pattern apoE2>apoE3>apoE4. CONCLUSIONS: We are able to collect lipidated apoE from the brain of awake and freely moving mice and monitor apoE levels over the course of several hours from a single mouse. Our technique enables assessment of brain apoE dynamics under physiological and pathophysiological conditions and in response to therapeutic interventions designed to affect apoE levels and lipidation within the brain
- …
