462 research outputs found

    Phonological awareness development in children with and without spoken language difficulties: A 12-month longitudinal study of German-speaking preschool children

    Get PDF
    Purpose: There is strong empirical evidence that English-speaking children with spoken language difficulties (SLD) often have phonological awareness (PA) deficits. The aim of this study was to explore longitudinally if this is also true of preschool children speaking German, a language that makes extensive use of derivational morphemes which may impact on the acquisition of different PA levels. Method: Thirty four-year-old children with SLD were assessed on eleven PA subtests at three points over a 12-month period and compared to 97 four-year-old typically developing (TD) children. Result: The TD-group had a mean percentage correct of over 50% for the majority of tasks (including phoneme tasks) and their PA skills developed significantly over time. In contrast, the SLD-group improved their PA performance over time on syllable and rhyme but not on phoneme level tasks. Group comparisons revealed that children with SLD had weaker PA skills, in particular on phoneme level tasks. Conclusion: The study contributes a longitudinal perspective on PA development before school entry. In line with their English-speaking peers, German-speaking children with SLD showed poorer PA skills than TD peers, indicating that the relationship between SLD and PA is similar across these two related but different languages

    Comparison of Different Global Information Sources Used in Surface Radiative Flux Calculation: Radiative Properties of the Surface

    Get PDF
    Direct estimates of surface radiative fluxes that resolve regional and weather-scale variabilty over the whole globe with reasonable accuracy have only become possible with the advent of extensive global, mostly satellite, datasets within the past couple of decades. The accuracy of these fluxes, estimated to be about 10-15 W per square meter is largely limited by the accuracy of the input datasets. The leading uncertainties in the surface fluxes are no longer predominantly induced by clouds but are now as much associated with uncertainties in the surface and near-surface atmospheric properties. This study presents a fuller, more quantitative evaluation of the uncertainties for the surface albedo and emissivity and surface skin temperatures by comparing the main available global datasets from the Moderate-Resolution Imaging Spectroradiometer product, the NASA Global Energy and Water Cycle Experiment Surface Radiation Budget project, the European Centre for Medium-Range Weather Forecasts, the National Aeronautics and Space Administration, the National Centers for Environmental Prediction, the International Satellite Cloud Climatology Project (ISCCP), the Laboratoire de Meteorologie Dynamique, NOAA/NASA Pathfinder Advanced Very High Resolution Radiometer project, NOAA Optimum Interpolation Sea Surface Temperature Analysis and the Tropical Rainfall Measuring Mission (TRMM) Microwave Image project. The datasets are, in practice, treated as an ensemble of realizations of the actual climate such that their differences represent an estimate of the uncertainty in their measurements because we do not possess global truth datasets for these quantities. The results are globally representative and may be taken as a generalization of our previous ISCCP-based uncertainty estimates for the input datasets. Surface properties have the primary role in determining the surface upward shortwave (SW) and longwave (LW) flux. From this study, the following conclusions are obtained. Although land surface albedos in the near near-infrared remain poorly constrained (highly uncertain), they do not cause too much error in total surface SW fluxes; the more subtle regional and seasonal variations associated with vegetation and snow are still on doubt. The uncertainty of the broadband black-sky SW albedo for land surface from this study is about 7%, which can easily induce 5-10 W per square meter uncertainty in (upwelling) surface SW flux estimates. Even though available surface (broadband) LW emissivity datasets differ significantly (3%-5% uncertainty), this disagreement is confined to wavelengths greater than 20 micrometers so that there is little practical effect (1-3 W per square meters) on the surface upwelling LW fluxes. The surface skin temperature is one of two leading factors that cause problems with surface LW fluxes. Even though the differences among the various datasets are generally only 2-4 K, this can easily cause 10-15 W per square meter uncertainty in calculated surface (upwelling) LW fluxes. Significant improvements could be obtained for surface LW flux calculations by improving the retrievals of (in order of decreasing importance): (1) surface skin temperature, (2) surface air and near-surface-layer temperature, (3) column precipitable water amount and (4) broadband emissivity. And for surface SW fluxes, improvements could be obtained (excluding improved cloud treatment) by improving the retrievals of (1) aerosols (from our sensitivity studies but not discussed in this work), and (2) surface (black-sky) albedo, of which, NIR part of the spectrum has much larger uncertainty

    Fast Longwave and Shortwave Radiative Flux (FLASHFlux) Products from CERES and MODIS Measurements

    Get PDF
    The Clouds and the Earth s Radiant Energy Systems (CERES) project is currently producing world-class climatological data products derived from measurements taken aboard the Terra and Aqua spacecrafts (Wielicki et al., 1996). While of exceptional fidelity, these data products require a considerable amount of processing to assure quality and verify accuracy and precision. Obtaining such high quality assurance, however, means that the CERES data is typically released more than six months after the acquisition of the initial measurements. For climate studies, such delays are of little consequence, especially considering the improved quality of the released data products. There are, however, many uses for the CERES data products on a near real-time basis. These include: CERES instrument calibration and subsystem quality checks, CLOUDSAT operations, seasonal predictions, agricultural and ocean assimilations, support of field campaigns, and outreach programs such as S'Cool. The FLASHflux project was envisioned as a conduit whereby CERES data could be provided to the community within a week of the initial measurements, with the trade-off that some degree of fidelity would be exacted to gain speed. In this paper, we will report on some very encouraging initial results from the FLASHflux project in which we compared the FLASHflux instantaneous surface fluxes to the CERES surface-only flux algorithm data products

    Active Amplification of the Terrestrial Albedo to Mitigate Climate Change: An Exploratory Study

    Full text link
    This study explores the potential to enhance the reflectance of solar insolation by the human settlement and grassland components of the Earth's terrestrial surface as a climate change mitigation measure. Preliminary estimates derived using a static radiative transfer model indicate that such efforts could amplify the planetary albedo enough to offset the current global annual average level of radiative forcing caused by anthropogenic greenhouse gases by as much as 30 percent or 0.76 W/m2. Terrestrial albedo amplification may thus extend, by about 25 years, the time available to advance the development and use of low-emission energy conversion technologies which ultimately remain essential to mitigate long-term climate change. However, additional study is needed to confirm the estimates reported here and to assess the economic and environmental impacts of active land-surface albedo amplification as a climate change mitigation measure.Comment: 21 pages, 3 figures. In press with Mitigation and Adaptation Strategies for Global Change, Springer, N

    Development of a decision guide for transanal irrigation in bowel disorders

    Get PDF
    Transanal irrigation (TAI), which has emerged as a therapy for patients with bowel dysfunction, can aid emptying of the bowel and help to re-establish control of bowel function by choosing the time and place of evacuation. Because of the ever-growing numbers of TAI systems available, choosing the optimal equipment can be overwhelming. Therefore, a consensus review of best practice from a working party of experts was thought to represent the most appropriate means of arriving at clinically meaningful advice. This led to the production of an article as well as a decision-guide booklet to aid choice of equipment, initiation, patient education, regimen setting and follow-up. These are designed to help healthcare providers initiating TAI to make optimal decisions for each individual patient

    The state of the Martian climate

    Get PDF
    60°N was +2.0°C, relative to the 1981–2010 average value (Fig. 5.1). This marks a new high for the record. The average annual surface air temperature (SAT) anomaly for 2016 for land stations north of starting in 1900, and is a significant increase over the previous highest value of +1.2°C, which was observed in 2007, 2011, and 2015. Average global annual temperatures also showed record values in 2015 and 2016. Currently, the Arctic is warming at more than twice the rate of lower latitudes

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    ASSESSMENT OF PALATABILITY ATTRIBUTE OF Gluteaus Medius STEAKS (BEEF TOP SIRLOIN BUTT)

    Get PDF
    ABSTRACT: Beef top sirloin butts (n = 48
    corecore