156 research outputs found
Invariant Measures on Stationary Bratteli Diagrams
We study dynamical systems acting on the path space of a stationary
(non-simple) Bratteli diagram. For such systems we explicitly describe all
ergodic probability measures invariant with respect to the tail equivalence
relation (or the Vershik map). These measures are completely described by the
incidence matrix of the diagram. Since such diagrams correspond to substitution
dynamical systems, this description gives an algorithm for finding invariant
probability measures for aperiodic non-minimal substitution systems. Several
corollaries of these results are obtained. In particular, we show that the
invariant measures are not mixing and give a criterion for a complex number to
be an eigenvalue for the Vershik map.Comment: 40 pages. Exposition is reworke
Positive-measure self-similar sets without interior
We recall the problem posed by Peres and Solomyak in Problems on self-similar and self-affine sets; an update. Progr. Prob. 46 (2000), 95–106: can one find examples of self-similar sets with positive Lebesgue measure, but with no interior? The method in Properties of measures supported on fat Sierpinski carpets, this issue, leads to families of examples of such sets
The natural extension of the β-transformation
For each real number β>1 the β-transformation is dened by Tβx = βx(mod1). In this paper the natural extension Tβ of the ergodic system underlying Tβ is explicitly given. Furthermore, it is shown that a certain induced system of this natural extension is Bernoulli. Since Tβ is weakly mixing, due to W. Parry, it follows from a deep result of A. Saleski that the natural extension is also Bernoulli, a result previously obtained by M. Smorodinsky
Singular Continuous Spectrum for the Laplacian on Certain Sparse Trees
We present examples of rooted tree graphs for which the Laplacian has
singular continuous spectral measures. For some of these examples we further
establish fractional Hausdorff dimensions. The singular continuous components,
in these models, have an interesting multiplicity structure. The results are
obtained via a decomposition of the Laplacian into a direct sum of Jacobi
matrices
Limit theorems for self-similar tilings
We study deviation of ergodic averages for dynamical systems given by
self-similar tilings on the plane and in higher dimensions. The main object of
our paper is a special family of finitely-additive measures for our systems. An
asymptotic formula is given for ergodic integrals in terms of these
finitely-additive measures, and, as a corollary, limit theorems are obtained
for dynamical systems given by self-similar tilings.Comment: 36 pages; some corrections and improved exposition, especially in
Section 4; references adde
Spectral estimates for two-dimensional Schroedinger operators with application to quantum layers
A logarithmic type Lieb-Thirring inequality for two-dimensional Schroedinger
operators is established. The result is applied to prove spectral estimates on
trapped modes in quantum layers
Local Complexity of Delone Sets and Crystallinity
This paper characterizes when a Delone set X is an ideal crystal in terms of
restrictions on the number of its local patches of a given size or on the
hetereogeneity of their distribution. Let N(T) count the number of
translation-inequivalent patches of radius T in X and let M(T) be the minimum
radius such that every closed ball of radius M(T) contains the center of a
patch of every one of these kinds. We show that for each of these functions
there is a `gap in the spectrum' of possible growth rates between being bounded
and having linear growth, and that having linear growth is equivalent to X
being an ideal crystal. Explicitly, for N(T), if R is the covering radius of X
then either N(T) is bounded or N(T) >= T/2R for all T>0. The constant 1/2R in
this bound is best possible in all dimensions. For M(T), either M(T) is bounded
or M(T) >= T/3 for all T>0. Examples show that the constant 1/3 in this bound
cannot be replaced by any number exceeding 1/2. We also show that every
aperiodic Delone set X has M(T) >= c(n)T for all T>0, for a certain constant
c(n) which depends on the dimension n of X and is greater than 1/3 when n > 1.Comment: 26 pages. Uses latexsym and amsfonts package
On the "Mandelbrot set" for a pair of linear maps and complex Bernoulli convolutions
We consider the "Mandelbrot set" for pairs of complex linear maps,
introduced by Barnsley and Harrington in 1985 and studied by Bousch, Bandt and
others. It is defined as the set of parameters in the unit disk such
that the attractor of the IFS is
connected. We show that a non-trivial portion of near the imaginary axis is
contained in the closure of its interior (it is conjectured that all non-real
points of are in the closure of the set of interior points of ). Next we
turn to the attractors themselves and to natural measures
supported on them. These measures are the complex analogs of
much-studied infinite Bernoulli convolutions. Extending the results of Erd\"os
and Garsia, we demonstrate how certain classes of complex algebraic integers
give rise to singular and absolutely continuous measures . Next we
investigate the Hausdorff dimension and measure of , for
in the set , for Lebesgue-a.e. . We also obtain partial results on
the absolute continuity of for a.e. of modulus greater
than .Comment: 22 pages, 5 figure
- …