919 research outputs found

    Complex magnetic topology and strong differential rotation on the low-mass T Tauri star V2247 Oph

    Full text link
    From observations collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope, we report the detection of Zeeman signatures on the low-mass classical TTauri star (cTTS) V2247Oph. Profile distortions and circular polarisation signatures detected in photospheric lines can be interpreted as caused by cool spots and magnetic regions at the surface of the star. The large-scale field is of moderate strength and highly complex; moreover, both the spot distribution and the magnetic field show significant variability on a timescale of only one week, as a likely result of strong differential rotation. Both properties make V2247Oph very different from the (more massive) prototypical cTTS BPTau; we speculate that this difference reflects the lower mass of V2247Oph. During our observations, V2247Oph was in a low-accretion state, with emission lines showing only weak levels of circular polarisation; we nevertheless find that excess emission apparently concentrates in a mid-latitude region of strong radial field, suggesting that it is the footpoint of an accretion funnel. The weaker and more complex field that we report on V2247Oph may share similarities with those of very-low-mass late-M dwarfs and potentially explain why low-mass cTTSs rotate on average faster than intermediate mass ones. These surprising results need confirmation from new independent data sets on V2247Oph and other similar low-mass cTTSs.Comment: MNRAS (in press) - 12 pages, 9 figure

    Variable X-ray emission from the accretion shock in the classical T Tauri star V2129 Ophiuchi

    Get PDF
    Context. The soft X-ray emission from high density plasma observed in several CTTS is usually associated with the accretion process. However, it is still unclear whether this high density “cool” plasma is heated in the accretion shock, or if it is coronal plasma fed or modified by the accretion process. Aims. We conducted a coordinated quasi-simultaneous optical and X-ray observing campaign of the CTTS V2129 Oph. In this paper, we analyze Chandra grating spectrometer data and attempt to correlate the observed X-ray emitting plasma components with the characteristics of the accretion process and the stellar magnetic field constrained by simultaneous optical observations. Methods. We analyze a 200 ks Chandra/HETGS observation, subdivided into two 100 ks segments, of the CTTS V2129 Oph. For the two observing segments corresponding to two different phases within one stellar rotation, we measure the density of the cool plasma component and the emission measure distribution. Results. The X-ray emitting plasma covers a wide range of temperatures: from 2 up to 34 MK. The cool plasma component of V2129 Oph (T ≈ 3−4 MK) varies between the two segments of the Chandra observation: during the first observing segment high density plasma (log N_c = 12.1_(-1.1)^(+0.6)) with high EM at ~3−4 MK is present, whereas, during the second segment, this plasma component has lower EM and lower density (log N_e 3 R_⋆). Conclusions. Our observation provides additional confirmation that the dense cool plasma at a few MK in CTTS is material heated in the accretion shock. The variability of this cool plasma component on V2129 Oph may be explained in terms of X-rays emitted in the accretion shock and seen with different viewing angles at the two rotational phases probed by our observation. In particular, during the first time interval a direct view of the shock region is possible, while, during the second, the accretion funnel itself intersects the line of sight to the shock region, preventing us from observing the accretion-driven X-rays

    Amino acid transport in schistosomes: Characterization of the permeaseheavy chain SPRM1hc

    Full text link
    Schistosomes are human parasitic flatworms that constitute an important public health problem globally. Adult parasites live in the bloodstream where they import nutrients such as amino acids across their body surface (the tegument). One amino acid transporter, Schistosome Permease 1 light chain, SPRM1lc, a member of the glycoprotein-associated family of transporters (gpaAT), has been characterized in schistosomes. Only a single member of the SLC3 family of glycoproteins that associate with gpaATs is found following extensive searching of the genomes of Schistosoma mansoni and S. japonicum. In this report, we characterize this schistosome permease heavy chain (SPRM1hc) gene and protein. The 72-kDa gene product is predicted to possess a single transmembrane domain, a (betaalpha)(8) (TIM barrel) conformation and a catalytic triad. Xenopus oocytes functionally expressing SPRM1hc with SPRM1lc import phenylalanine, arginine, lysine, alanine, glutamine, histidine, tryptophan, and leucine. Biochemical characterization demonstrates that in Xenopus extracts and in schistosome extracts SPRM1hc is associated into a high molecular weight complex with SPRM1lc that is disrupted by reducing agents. Quantitative real-time PCR and Western analysis demonstrate that SPRM1hc is expressed in each schistosome life stage examined (eggs, cercariae, schistosomula, adult males and females). SPRM1hc is widely distributed throughout adult male and female worms as determined by immunolocalization. Consistent with the hypothesis that SPRM1hc functions to facilitate nutrient uptake from host blood, immunogold electron microscopy confirms that the protein is distributed on the host-interactive tegumental membranes. We propose that surface-exposed, host-interactive, nutrient-transporting proteins like the SPRM1 heterodimer are promising vaccine candidates

    Suppressing Glucose Transporter Gene Expression in Schistosomes Impairs Parasite Feeding and Decreases Survival in the Mammalian Host

    Get PDF
    Adult schistosomes live in the host's bloodstream where they import nutrients such as glucose across their body surface (the tegument). The parasite tegument is an unusual structure since it is enclosed not by the typical one but by two closely apposed lipid bilayers. Within the tegument two glucose importing proteins have been identified; these are schistosome glucose transporter (SGTP) 1 and 4. SGTP4 is present in the host interactive, apical tegumental membranes, while SGTP1 is found in the tegumental basal membrane (as well as in internal tissues). The SGTPs act by facilitated diffusion. To examine the importance of these proteins for the parasites, RNAi was employed to knock down expression of both SGTP genes in the schistosomula and adult worm life stages. Both qRT-PCR and western blotting analysis confirmed successful gene suppression. It was found that SGTP1 or SGTP4-suppressed parasites exhibit an impaired ability to import glucose compared to control worms. In addition, parasites with both SGTP1 and SGTP4 simultaneously suppressed showed a further reduction in capacity to import glucose compared to parasites with a single suppressed SGTP gene. Despite this debility, all suppressed parasites exhibited no phenotypic distinction compared to controls when cultured in rich medium. Following prolonged incubation in glucose-depleted medium however, significantly fewer SGTP-suppressed parasites survived. Finally, SGTP-suppressed parasites showed decreased viability in vivo following infection of experimental animals. These findings provide direct evidence for the importance of SGTP1 and SGTP4 for schistosomes in importing exogenous glucose and show that these proteins are important for normal parasite development in the mammalian host

    Dynamo Processes in the T Tauri star V410 Tau

    Full text link
    We present new brightness and magnetic images of the weak-line T Tauri star V410 Tau, made using data from the NARVAL spectropolarimeter at Telescope Bernard Lyot (TBL). The brightness image shows a large polar spot and significant spot coverage at lower latitudes. The magnetic maps show a field that is predominantly dipolar and non-axisymmetric with a strong azimuthal component. The field is 50% poloidal and 50% toroidal, and there is very little differential rotation apparent from the magnetic images. A photometric monitoring campaign on this star has previously revealed V-band variability of up to 0.6 magnitudes but in 2009 the lightcurve is much flatter. The Doppler image presented here is consistent with this low variability. Calculating the flux predicted by the mapped spot distribution gives an peak-to-peak variability of 0.04 magnitudes. The reduction in the amplitude of the lightcurve, compared with previous observations, appears to be related to a change in the distribution of the spots, rather than the number or area. This paper is the first from a Zeeman-Doppler imaging campaign being carried out on V410 Tau between 2009-2012 at TBL. During this time it is expected that the lightcurve will return to a high amplitude state, allowing us to ascertain whether the photometric changes are accompanied by a change in the magnetic field topology.Comment: 12 pages, 11 figures, accepted by MNRA

    Geology of Niobrara State Park, Knox County, Nebraska, and Adjacent Areas, with a Brief History of the Park, Gavins Point Dam, and Lewis and Clark Lake

    Get PDF
    Location Niobrara State Park is located in northwestern Knox County, Nebraska, just west of the town of Niobrara and on the west side of the Niobrara River. The present park was opened in the summer of 1987. Mostly north of Nebraska Highway 12, the site is hilly with bluffs overlooking the Missouri and Niobrara rivers. Excellent facilities include paved roads, cabins, an outdoor swimming pooi, hiking trails, picnic and camping sites, horseback riding trails, playgrounds, restrooms, a group lodge, and an interpretive shelter. Many vantage points in the park have beautiful views of the lower Niobrara Valley and the middle Missouri Valley. Lovers of native plants and wildlife can see many different species in and near the park. Park grounds are open all year. The park office, about 1.5 miles northwest of the park entrance, is open daily from mid-April to mid-November, and weekdays at other times of the year (figs. 1 and 2). Purposes This educational circular describes the prehistory and history of Niobrara State Park, Gavins Point Dam and its reservoir-Lewis and Clark Lake-and several aspects of the geology of the park and nearby or adjoining areas. Sections include information on minerals, fossils, stratigraphy, and geologic history, but the principal focuses of this circular are on the work of and changes in the Niobrara River and on geologic hazards in the area. Cautions Caution is advised when visiting the park or any other area. A void walking on landslide areas. Stay away from steep hill slopes. Be careful when working on dark shale exposures on hot days because temperatures on these shales reach well above 100 degrees F. Poison ivy, stinging insects, and other such hazards occur. Be careful! We remind readers that collecting of any kind is prohibited in the park and that permission must be obtained from property owners before going on or collecting from private property

    Dynamic Interstitial Cell Response during Myocardial Infarction Predicts Resilience to Rupture in Genetically Diverse Mice.

    Get PDF
    Cardiac ischemia leads to the loss of myocardial tissue and the activation of a repair process that culminates in the formation of a scar whose structural characteristics dictate propensity to favorable healing or detrimental cardiac wall rupture. To elucidate the cellular processes underlying scar formation, here we perform unbiased single-cell mRNA sequencing of interstitial cells isolated from infarcted mouse hearts carrying a genetic tracer that labels epicardial-derived cells. Sixteen interstitial cell clusters are revealed, five of which were of epicardial origin. Focusing on stromal cells, we define 11 sub-clusters, including diverse cell states of epicardial- and endocardial-derived fibroblasts. Comparing transcript profiles from post-infarction hearts in C57BL/6J and 129S1/SvImJ inbred mice, which displays a marked divergence in the frequency of cardiac rupture, uncovers an early increase in activated myofibroblasts, enhanced collagen deposition, and persistent acute phase response in 129S1/SvImJ mouse hearts, defining a crucial time window of pathological remodeling that predicts disease outcome
    • 

    corecore