22 research outputs found
Anomalous diffusion and Tsallis statistics in an optical lattice
We point out a connection between anomalous quantum transport in an optical
lattice and Tsallis' generalized thermostatistics. Specifically, we show that
the momentum equation for the semiclassical Wigner function that describes
atomic motion in the optical potential, belongs to a class of transport
equations recently studied by Borland [PLA 245, 67 (1998)]. The important
property of these ordinary linear Fokker--Planck equations is that their
stationary solutions are exactly given by Tsallis distributions. Dissipative
optical lattices are therefore new systems in which Tsallis statistics can be
experimentally studied.Comment: 4 pages, 1 figur
Interferometry with independent Bose-Einstein ondensates: parity as an EPR/Bell quantum variable
When independent Bose-Einstein condensates (BEC), described quantum
mechanically by Fock (number) states, are sent into interferometers, the
measurement of the output port at which the particles are detected provides a
binary measurement, with two possible results . With two interferometers
and two BEC's, the parity (product of all results obtained at each
interferometer) has all the features of an Einstein-Podolsky-Rosen quantity,
with perfect correlations predicted by quantum mechanics when the settings
(phase shifts of the interferometers) are the same. When they are different,
significant violations of Bell inequalities are obtained. These violations do
not tend to zero when the number of particles increases, and can therefore
be obtained with arbitrarily large systems, but a condition is that all
particles should be detected. We discuss the general experimental requirements
for observing such effects, the necessary detection of all particles in
correlation, the role of the pixels of the CCD detectors, and that of the
alignments of the interferometers in terms of matching of the wave fronts of
the sources in the detection regions. Another scheme involving three
interferometers and three BEC's is discussed; it leads to Greenberger Horne
Zeilinger (GHZ) sign contradictions, as in the usual GHZ case with three
particles, but for an arbitrarily large number of them. Finally,
generalizations of the Hardy impossibilities to an arbitrarily large number of
particles are introduced. BEC's provide a large versality for observing
violations of local realism in a variety of experimental arrangements.Comment: appendix adde
Advancing brain barriers RNA sequencing: guidelines from experimental design to publication
Background: RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process.Main body: In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN (https://www.btrain-2020.eu/) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood–brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community.Conclusion: Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community
Subrecoil laser cooling: recent developments in velocity-selective coherent population trapping
Velocity-selective coherent population trapping (VSCPT) is the first demonstrated sub-recoil laser cooling scheme.1</jats:p
