9,003 research outputs found

    Viscous and Resistive Effects on the MRI with a Net Toroidal Field

    Full text link
    Resistivity and viscosity have a significant role in establishing the energy levels in turbulence driven by the magnetorotational instability (MRI) in local astrophysical disk models. This study uses the Athena code to characterize the effects of a constant shear viscosity \nu and Ohmic resistivity \eta in unstratified shearing box simulations with a net toroidal magnetic flux. A previous study of shearing boxes with zero net magnetic field performed with the ZEUS code found that turbulence dies out for values of the magnetic Prandtl number, P_m = \nu/\eta, below P_m \sim 1; for P_m \gtrsim 1, time- and volume-averaged stress levels increase with P_m. We repeat these experiments with Athena and obtain consistent results. Next, the influence of viscosity and resistivity on the toroidal field MRI is investigated both for linear growth and for fully-developed turbulence. In the linear regime, a sufficiently large \nu or \eta can prevent MRI growth; P_m itself has little direct influence on growth from linear perturbations. By applying a range of values for \nu and \eta to an initial state consisting of fully developed turbulence in the presence of a background toroidal field, we investigate their effects in the fully nonlinear system. Here, increased viscosity enhances the turbulence, and the turbulence decays only if the resistivity is above a critical value; turbulence can be sustained even when P_m < 1, in contrast to the zero net field model. While we find preliminary evidence that the stress converges to a small range of values when \nu and \eta become small enough, the influence of dissipation terms on MRI-driven turbulence for relatively large \eta and \nu is significant, independent of field geometry.Comment: Accepted to ApJ; version 2 - minor changes following review; 35 pages (preprint format), 10 figure

    Resistivity-driven State Changes in Vertically Stratified Accretion Disks

    Full text link
    We investigate the effect of shear viscosity and Ohmic resistivity on the magnetorotational instability (MRI) in vertically stratified accretion disks through a series of local simulations with the Athena code. First, we use a series of unstratified simulations to calibrate physical dissipation as a function of resolution and background field strength; the effect of the magnetic Prandtl number, Pm = viscosity/resistivity, on the turbulence is captured by ~32 grid zones per disk scale height, H. In agreement with previous results, our stratified disk calculations are characterized by a subthermal, predominately toroidal magnetic field that produces MRI-driven turbulence for |z| < 2 H. Above |z| = 2 H, magnetic pressure dominates and the field is buoyantly unstable. Large scale radial and toroidal fields are also generated near the mid-plane and subsequently rise through the disk. The polarity of this mean field switches on a roughly 10 orbit period in a process that is well-modeled by an alpha-omega dynamo. Turbulent stress increases with Pm but with a shallower dependence compared to unstratified simulations. For sufficiently large resistivity, on the order of cs H/1000, where cs is the sound speed, MRI turbulence within 2 H of the mid-plane undergoes periods of resistive decay followed by regrowth. This regrowth is caused by amplification of toroidal field via the dynamo. This process results in large amplitude variability in the stress on 10 to 100 orbital timescales, which may have relevance for partially ionized disks that are observed to have high and low accretion states.Comment: very minor changes, accepted to Ap

    Superconductivity of the One-Dimensional d-p Model with p-p transfer

    Full text link
    Using the numerical diagonalization method, we investigate the one-dimensional dd-pp model, simulating a Cu-O linear chain with strong Coulomb repulsions. Paying attention to the effect of the transfer energy tppt_{pp} between the nearest neighbor oxygen-sites, we calculate the critical exponent of correlation functions KρK_{\rho} based on the Luttinger liquid relations and the ground state energy E0(ϕ)E_0(\phi) as a function of an external flux ϕ\phi. We find that the transfer tppt_{pp} increases the charge susceptibility and the exponent KρK_{\rho} in cooperation with the repulsion UdU_{d} at Cu-site. We also show that anomalous flux quantization occurs for Kρ>1K_{\rho}>1. The superconducting region is presented on a phase diagram of UdU_{d} vs. tppt_{pp} plane.Comment: 4 pages, RevTex + 5 PS figures include

    Laser Spectroscopic Measurement of Helium Isotope Ratios

    Full text link
    A sensitive laser spectroscopic method has been applied to the quantitative determination of the isotope ratio of helium at the level of 3He/4He = 10^-7 - 10^-5. The resonant absorption of 1083 nm laser light by the metastable 3He atoms in a discharge cell was measured with the frequency modulation saturation spectroscopy technique while the abundance of 4He was measured by a direct absorption technique. The results on three different samples extracted from the atmosphere and commercial helium gas were in good agreement with values obtained with mass spectrometry. The achieved 3-sigma detection limit of 3He in helium is 4 x 10^-9. This demonstration required a 200 micro-L STP sample of He. The sensitivity can be further improved, and the required sample size reduced, by several orders of magnitude with the addition of cavity enhanced spectroscopy

    Ferromagnetism and phase separation in one-dimensional d-p and periodic Anderson models

    Full text link
    Using the Density Matrix Renormalization Group, we study metallic ferromagnetism in a one-dimensional copper-oxide model which contains one oxygen p-orbital and one copper d-orbital. The parameters for the d-p model can be chosen so that it is similar to the one-dimensional periodic Anderson model. For these parameters, we compare the ground-state phase diagram with that of the Anderson model and find a ferromagnetic region analogous to one found in the Anderson model, but which is pushed to somewhat higher densities and interaction strengths. In both models, we find a region within the ferromagnetic phase in which phase separation between a localized ferromagnetic domain and a weakly antiferromagnetic regime occurs. We then choose a set of parameter values appropriate for copper-oxide materials and explore the ground-state phase diagram as a function of the oxygen-oxygen hopping strength and the electron density. We find three disconnected regions of metallic ferromagnetism and give physical pictures of the three different mechanisms for ferromagnetism in these phases.Comment: 12 pages (RevTeX), 12 figures (EPS

    Microstructural and morphological properties of homoepitaxial (001)ZnTe layers investigated by x-ray diffuse scattering

    Full text link
    The microstructural and morphological properties of homoepitaxial (001)ZnTe layers are investigated by x-ray diffuse scattering. High resolution reciprocal space maps recorded close to the ZnTe (004) Bragg peak show different diffuse scattering features. One kind of cross-shaped diffuse scattering streaks along directions can be attributed to stacking faults within the epilayers. Another kind of cross-shaped streaks inclined at an angle of about 80deg with respect to the in-plane direction arises from the morphology of the epilayers. (abridged version

    Impact Ionization in ZnS

    Full text link
    The impact ionization rate and its orientation dependence in k space is calculated for ZnS. The numerical results indicate a strong correlation to the band structure. The use of a q-dependent screening function for the Coulomb interaction between conduction and valence electrons is found to be essential. A simple fit formula is presented for easy calculation of the energy dependent transition rate.Comment: 9 pages LaTeX file, 3 EPS-figures (use psfig.sty), accepted for publication in PRB as brief Report (LaTeX source replaces raw-postscript file

    Monitoramento e detecção de desmatamento no bioma Cerrado matogrossense utilizando imagens de multisensores.

    Get PDF
    In the last decades, Brazil has become a global agricultural power and the Cerrado biome (Brazilian savanna) has been playing an important role in the Brazilian agriculture growth. To better analyze the biome human disturbance dynamics, it is necessary to develop and adopt effective methods of assessment and monitoring of land use and land cover changes. The goal is to provide adequate land cover classifications and implement an operational monitoring system in the Cerrado biome, since there is only a few attempts to control the degradation of this biome. This monitoring system can be accomplished using MODIS images, as this sensor has great potential for studies about the seasonal dynamics of Cerrado vegetation phytophysiognomies. Due to this new dynamics, the main objective of this work was to apply the PRODES and DETER like methodologies to detect and map deforestation in the Cerrado biome of Mato Grosso State, Brazil, using Landsat and MODIS data. The proposed methodology was able to detect correctly 65% of all MODIS detected polygons; this represented 74% of estimated area of deforestation. Also, it showed suitability to identify new deforested areas in both shrubland and forestland areas with a tendency to misclassify smaller polygons (< 50 ha) of deforestation
    corecore