176 research outputs found
Human TSCM cell dynamics in vivo are compatible with long-lived immunological memory and stemness.
Adaptive immunity relies on the generation and maintenance of memory T cells to provide protection against repeated antigen exposure. It has been hypothesised that a self-renewing population of T cells, named stem cell-like memory T (TSCM) cells, are responsible for maintaining memory. However, it is not clear if the dynamics of TSCM cells in vivo are compatible with this hypothesis. To address this issue, we investigated the dynamics of TSCM cells under physiological conditions in humans in vivo using a multidisciplinary approach that combines mathematical modelling, stable isotope labelling, telomere length analysis, and cross-sectional data from vaccine recipients. We show that, unexpectedly, the average longevity of a TSCM clone is very short (half-life < 1 year, degree of self-renewal = 430 days): far too short to constitute a stem cell population. However, we also find that the TSCM population is comprised of at least 2 kinetically distinct subpopulations that turn over at different rates. Whilst one subpopulation is rapidly replaced (half-life = 5 months) and explains the rapid average turnover of the bulk TSCM population, the half-life of the other TSCM subpopulation is approximately 9 years, consistent with the longevity of the recall response. We also show that this latter population exhibited a high degree of self-renewal, with a cell residing without dying or differentiating for 15% of our lifetime. Finally, although small, the population was not subject to excessive stochasticity. We conclude that the majority of TSCM cells are not stem cell-like but that there is a subpopulation of TSCM cells whose dynamics are compatible with their putative role in the maintenance of T cell memory
3D Real-Time Echocardiography Combined with Mini Pressure Wire Generate Reliable Pressure-Volume Loops in Small Hearts
BACKGROUND:
Pressure-volume loops (PVL) provide vital information regarding ventricular performance and pathophysiology in cardiac disease. Unfortunately, acquisition of PVL by conductance technology is not feasible in neonates and small children due to the available human catheter size and resulting invasiveness. The aim of the study was to validate the accuracy of PVL in small hearts using volume data obtained by real-time three-dimensional echocardiography (3DE) and simultaneously acquired pressure data.
METHODS:
In 17 piglets (weight range: 3.6–8.0 kg) left ventricular PVL were generated by 3DE and simultaneous recordings of ventricular pressure using a mini pressure wire (PVL3D). PVL3D were compared to conductance catheter measurements (PVLCond) under various hemodynamic conditions (baseline, alpha-adrenergic stimulation with phenylephrine, beta-adrenoreceptor-blockage using esmolol). In order to validate the accuracy of 3D volumetric data, cardiac magnetic resonance imaging (CMR) was performed in another 8 piglets.
RESULTS:
Correlation between CMR- and 3DE-derived volumes was good (enddiastolic volume: mean bias -0.03ml ±1.34ml). Computation of PVL3D in small hearts was feasible and comparable to results obtained by conductance technology. Bland-Altman analysis showed a low bias between PVL3D and PVLCond. Systolic and diastolic parameters were closely associated (Intraclass-Correlation Coefficient for: systolic myocardial elastance 0.95, arterial elastance 0.93, diastolic relaxation constant tau 0.90, indexed end-diastolic volume 0.98). Hemodynamic changes under different conditions were well detected by both methods (ICC 0.82 to 0.98). Inter- and intra-observer coefficients of variation were below 5% for all parameters.
CONCLUSIONS:
PVL3D generated from 3DE combined with mini pressure wire represent a novel, feasible and reliable method to assess different hemodynamic conditions of cardiac function in hearts comparable to neonate and infant size. This methodology may be integrated into clinical practice and cardiac catheterization programs and has the capability to contribute to clinical decision making even in small hearts
Reconstructing the reproductive mode of an Ediacaran macro-organism.
Enigmatic macrofossils of late Ediacaran age (580-541 million years ago) provide the oldest known record of diverse complex organisms on Earth, lying between the microbially dominated ecosystems of the Proterozoic and the Cambrian emergence of the modern biosphere. Among the oldest and most enigmatic of these macrofossils are the Rangeomorpha, a group characterized by modular, self-similar branching and a sessile benthic habit. Localized occurrences of large in situ fossilized rangeomorph populations allow fundamental aspects of their biology to be resolved using spatial point process techniques. Here we use such techniques to identify recurrent clustering patterns in the rangeomorph Fractofusus, revealing a complex life history of multigenerational, stolon-like asexual reproduction, interspersed with dispersal by waterborne propagules. Ecologically, such a habit would have allowed both for the rapid colonization of a localized area and for transport to new, previously uncolonized areas. The capacity of Fractofusus to derive adult morphology by two distinct reproductive modes documents the sophistication of its underlying developmental biology.This work has been supported by the Natural Environment Research Council [grant numbers NE/I005927/1 to C.G.K., NE/J5000045/1 to J.J.M., NE/L011409/1 to A.G.L. and NE/G523539/1 to E.G.M.], and a Henslow Junior Research Fellowship from Cambridge Philosophical Society to A.G.L.This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nature1464
Mechanistic interplay between ceramide and insulin resistance
Recent research adds to a growing body of literature on the essential role of ceramides in glucose homeostasis and insulin signaling, while the mechanistic interplay between various components of ceramide metabolism remains to be quantified. We present an extended model of C16:0 ceramide production through both the de novo synthesis and the salvage pathways. We verify our model with a combination of published models and independent experimental data. In silico experiments of the behavior of ceramide and related bioactive lipids in accordance with the observed transcriptomic changes in obese/diabetic murine macrophages at 5 and 16 weeks support the observation of insulin resistance only at the later phase. Our analysis suggests the pivotal role of ceramide synthase, serine palmitoyltransferase and dihydroceramide desaturase involved in the de novo synthesis and the salvage pathways in influencing insulin resistance versus its regulation
The role of IoT sensor in smart building context for indoor fire hazard scenario: A systematic review of interdisciplinary articles
In recent years, there has been growing interest in using Internet of Things (IoT) sensors to address indoor fire hazards in smart buildings. This study conducted a systematic review of 54 articles from interdisciplinary databases using selected keywords over the past decade, with the aim of investigating the potential role of IoT sensors in indoor fire hazard contingency. Through thematic analysis, five main themes and 24 sub-themes were identified, including vision-based sensing, smart automation, evacuation and indoor navigation, early fire detection, intervention and prevention, and BIM-related. The results of this review indicate that there are numerous aspects of indoor fire hazards that could benefit from the use of IoT sensors, and that the recurrence of technical terminologies in the analysed articles underscores the importance of these technologies in establishing an IoT sensor network in smart building environments, particularly in addressing indoor fire incidents. The outcome and findings spurred a concept for potential future research ideas. As a result of the findings, a conceptual framework for IoT sensors in the context of smart buildings is proposed
The Psychological Impact of COVID-19 and Restrictive Measures in the World
Background: In a short time, the COVID-19 pandemic turned into a global emergency. The fear of becoming infected and the lockdown measures have drastically changed people's daily routine. The aim of this study is to establish the psychological impact that the COVID-19 pandemic is entailing, particularly with regards to levels of stress, anxiety and depression, and to the risks of developing Post-Traumatic Stress Disorder (PTSD). Methods: The study, carried out with a sample of 1612 subjects distributed in seven countries (Australia, China, Ecuador, Iran, Italy, Norway and the United States), allowed us to collect information about the psychological impact of COVID-19. Results: The findings of this study show that the levels of stress, depression and anxiety, as well as the risks of PTSD, are higher than average in over half of the considered sample. The severity of these disorders significantly depends on gender, type of outdoor activities, characteristics of their homes, eventual presence of infected acquaintances, time dedicated to looking for related information (in the news and social networks), type of source information and, in part, to the level of education and income. Conclusions: We conclude that COVID-19 has a very strong psychological impact on the global population. This appears to be linked to the coping strategies adopted, level of mindful awareness, socio-demographic variables, people's habits and the way individuals use means of communication and information
Ceramides bind VDAC2 to trigger mitochondrial apoptosis
Ceramides draw wide attention as tumor suppressor lipids that act directly on mitochondria to trigger apoptotic cell death. However, molecular details of the underlying mechanism are largely unknown. Using a photoactivatable ceramide probe, we here identify the voltage-dependent anion channels VDAC1 and VDAC2 as mitochondrial ceramide binding proteins. Coarse-grain molecular dynamics simulations reveal that both channels harbor a ceramide binding site on one side of the barrel wall. This site includes a membrane-buried glutamate that mediates direct contact with the ceramide head group. Substitution or chemical modification of this residue abolishes photolabeling of both channels with the ceramide probe. Unlike VDAC1 removal, loss of VDAC2 or replacing its membrane-facing glutamate with glutamine renders human colon cancer cells largely resistant to ceramide-induced apoptosis. Collectively, our data support a role of VDAC2 as direct effector of ceramide-mediated cell death, providing a molecular framework for how ceramides exert their anti-neoplastic activity
Retinoblastoma with and without Extraocular Tumor Extension: A Global Comparative Study of 3435 Patients
PURPOSE:
To study the treatment and outcomes of children with retinoblastoma (RB) with extraocular tumor extension (RB-EOE) and compare them with RB without extraocular tumor extension (RB-w/o-EOE).
DESIGN:
Multicenter intercontinental collaborative prospective study from 2017 to 2020. RB-EOE cases included those with overt orbital tumor extension in treatment-naive patients. Cases with microscopic orbital extension detected postenucleation were excluded from the study.
PARTICIPANTS: \ud
A total of 319 children with RB-EOE and 3116 children with RB-w/o-EOE.
INTERVENTION:
Chemotherapy, enucleation, exenteration, radiotherapy.
MAIN OUTCOME MEASURES:
Systemic metastasis and death.
RESULTS:
Of the 3435 RB patients included in this study, 309 (9%) were from low-income countries (LIC), 1448 (42%) from lower-middle income, 1012 (29%) from upper-middle income, and 666 (19%) patients from high-income countries. There was an inverse relationship between the percentage of RB-EOE and national income level, with 96 (31%) patients from LIC, 197 (6%) lower-middle income, 20 (2%) upper-middle income, and 6 (1%) patients from high-income countries (P = 0.0001). The outcomes were statistically significant for RB-EOE compared with RB-w/o-EOE: systemic metastasis (32% vs. 4% respectively; P = 0.0001) and metastasis-related death (63% vs. 6% respectively; P = 0.0001). Multimodal treatment was the most common form of treatment (n = 177; 54%) for RB-EOE, with most cases undergoing a combination of intravenous chemotherapy and enucleation (n = 97; 30%). Adjuvant external beam radiotherapy (EBRT) after surgery (enucleation/orbital exenteration) was given in only 68 (21%) cases. Kaplan–Meier analysis for systemic metastasis and metastasis-related death in RB-EOE was 28% and 57% at 1 year, 29% and 60% at 2 years, and 29% and 61% at 3 years, respectively. Cox regression analysis revealed that the risk of death from RB-EOE was greater in patients aged >4 years than <2 years (hazard ratio, 2.912; P < 0.001) and for unimodal (surgery or intravenous chemotherapy) and bimodal (surgery and intravenous chemotherapy) treatment than trimodal treatment (surgery, intravenous chemotherapy, and EBRT) (hazard ratio, 2.023; P = 0.004 and hazard ratio, 1.819; P = 0.027, respectively).
CONCLUSIONS:
Retinoblastoma with extraocular tumor extension is associated with a higher risk of metastasis and death. Patients with RB-EOE are likely to benefit from trimodal treatment (intravenous chemotherapy, surgery, and EBRT) rather than treatment protocols excluding EBRT.
Financial Disclosure(s)
The authors have no proprietary or commercial interest in any materials discussed in this article
Physical Methods for the Preparation of Hybrid Nanocomposite Polymer Latex Particles
In this chapter, we will highlight conceptual physical approaches towards the fabrication of nanocomposite polymer latexes in which each individual latex particle contains one or more "hard" nanoparticles, such as clays, silicates, titanates, or other metal(oxides). By "physical approaches" we mean that the "hard" nanoparticles are added as pre-existing entities, and are not synthesized in situ as part of the nanocomposite polymer latex fabrication process. We will narrow our discussion to focus on physical methods that rely on the assembly of nanoparticles onto the latex particles after the latex particles have been formed, or its reciprocal analogue, the adhesion of polymer onto an inorganic nanoparticle. First, will discuss the phenomenon of heterocoagulation and its various driving forces, such as electrostatic interactions, the hydrophobic effect, and secondary molecular interactions. We will then address methods that involve assembly of nanoparticles onto or around the more liquid precursors (i.e., swollen/growing latex particles or monomer droplets). We will focus on the phenomenon of Pickering stabilization. We will then discuss features of particle interaction with soft interfaces, and see how the adhesion of particles onto emulsion droplets can be applied in suspension, miniemulsion, and emulsion polymerization. Finally, we will very briefly mention some interesting methods that make use of interface-driven templating for making well-defined assembled clusters and supracolloidal structures
- …
