431 research outputs found

    Fundamental Physics with the Laser Astrometric Test Of Relativity

    Full text link
    The Laser Astrometric Test Of Relativity (LATOR) is a joint European-U.S. Michelson-Morley-type experiment designed to test the pure tensor metric nature of gravitation - a fundamental postulate of Einstein's theory of general relativity. By using a combination of independent time-series of highly accurate gravitational deflection of light in the immediate proximity to the Sun, along with measurements of the Shapiro time delay on interplanetary scales (to a precision respectively better than 0.1 picoradians and 1 cm), LATOR will significantly improve our knowledge of relativistic gravity. The primary mission objective is to i) measure the key post-Newtonian Eddington parameter \gamma with accuracy of a part in 10^9. (1-\gamma) is a direct measure for presence of a new interaction in gravitational theory, and, in its search, LATOR goes a factor 30,000 beyond the present best result, Cassini's 2003 test. The mission will also provide: ii) first measurement of gravity's non-linear effects on light to ~0.01% accuracy; including both the Eddington \beta parameter and also the spatial metric's 2nd order potential contribution (never measured before); iii) direct measurement of the solar quadrupole moment J2 (currently unavailable) to accuracy of a part in 200 of its expected size; iv) direct measurement of the "frame-dragging" effect on light by the Sun's gravitomagnetic field, to 1% accuracy. LATOR's primary measurement pushes to unprecedented accuracy the search for cosmologically relevant scalar-tensor theories of gravity by looking for a remnant scalar field in today's solar system. We discuss the mission design of this proposed experiment.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020," 19-21 April 2005, ESTEC, Noodrwijk, The Netherland

    A Mission to Explore the Pioneer Anomaly

    Full text link
    The Pioneer 10 and 11 spacecraft yielded the most precise navigation in deep space to date. These spacecraft had exceptional acceleration sensitivity. However, analysis of their radio-metric tracking data has consistently indicated that at heliocentric distances of 2070\sim 20-70 astronomical units, the orbit determinations indicated the presence of a small, anomalous, Doppler frequency drift. The drift is a blue-shift, uniformly changing with a rate of (5.99±0.01)×109\sim(5.99 \pm 0.01)\times 10^{-9} Hz/s, which can be interpreted as a constant sunward acceleration of each particular spacecraft of aP=(8.74±1.33)×1010m/s2a_P = (8.74 \pm 1.33)\times 10^{-10} {\rm m/s^2}. This signal has become known as the Pioneer anomaly. The inability to explain the anomalous behavior of the Pioneers with conventional physics has contributed to growing discussion about its origin. There is now an increasing number of proposals that attempt to explain the anomaly outside conventional physics. This progress emphasizes the need for a new experiment to explore the detected signal. Furthermore, the recent extensive efforts led to the conclusion that only a dedicated experiment could ultimately determine the nature of the found signal. We discuss the Pioneer anomaly and present the next steps towards an understanding of its origin. We specifically focus on the development of a mission to explore the Pioneer Anomaly in a dedicated experiment conducted in deep space.Comment: 8 pages, 9 figures; invited talk given at the 2005 ESLAB Symposium "Trends in Space Science and Cosmic Vision 2020", 19-21 April 2005, ESTEC, Noordwijk, The Netherland

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    The Role of SHROOM3 in Congenital Heart Disease

    Get PDF
    Background and Hypothesis: Congenital heart defects (CHD) are the most common, and most frequently fatal birth defects, but most etiology remains unknown. We identified a patient with CHD and implicated a gene called SHROOM3. SHROOM3 binds Dishevelled2 which is the central cytoplasmic component of both canonical and noncanonical Wnt/planar cell polarity (PCP) signaling pathways. PCP drives cell movement and is important to embryogenesis and disruption causes CHD. We hypothesize CHD can result from SHROOM3-loss-of-function due to PCP disruption. Project Methods: To interrogate SHROOM3’s role in CHD and PCP we utilized an established in vivo SHROOM3-loss-of-function model, Shroom3 gene trap mice (Shroom3gt). We also utilized a loss-of-function model for PCP membrane component VANGL2, (Vangl2+/-). We assayed genetic interaction between Shroom3 and Vangl2 during cardiac development by crossing singly heterozygous null mice to produce compound heterozygous embryos, harvested embryos, and performed histologic analysis for cardiac defects. We also utilized a human in vitro SHROOM3-loss-of-function model, a CRISPR-Cas9 edited SHROOM3 knockout HELA cell line. We assayed cell movement using a scratch assay. Results: Compound heterozygous Shroom3+/gt;Vangl2+/- embryos had a three fold increase in heart defects compared to singly heterozygous Shroom3+/gt;Vangl2+/+ or Shroom3+/+;Vangl2+/- embryos (3 of 19 or 15.7%, versus 1 of 17 or 5.2%, and 1 of 19 or 4.8%, respectively), demonstrating a trend towards genetic interaction between SHROOM3 and VANGL2/PCP during cardiac development. The scratch assays demonstrated cell movement defects due to SHROOM3-loss-of-function consistent with increased cell movement. Conclusion and Potential Impact: We demonstrate SHROOM3 interacts with Wnt/PCP during cardiac development. Further interrogation of SHROOM3’s role in Wnt signaling will provide insight into the mechanisms by which a novel CHD candidate participates in cardiogenesis and will improve CHD diagnosis, management, and therapeutic development

    Development of a prototype superconducting radio-frequency cavity for conduction-cooled accelerators

    Get PDF
    The higher efficiency of superconducting radio-frequency (SRF) cavities compared to normal-conducting ones enables the development of high-energy continuous-wave linear accelerators (linacs). Recent progress in the development of high-quality Nb3_3Sn film coatings along with the availability of cryocoolers with high cooling capacity at 4 K makes it feasible to operate SRF cavities cooled by thermal conduction at relevant accelerating gradients for use in accelerators. A possible use of conduction-cooled SRF linacs is for environmental applications, requiring electron beams with energy of 1101 - 10 MeV and 1 MW of power. We have designed a 915 MHz SRF linac for such an application and developed a prototype single-cell cavity to prove the proposed design by operating it with cryocoolers at the accelerating gradient required for 1 MeV energy gain. The cavity has a 3\sim 3 μ\mum thick Nb3_3Sn film on the inner surface, deposited on a 4\sim4 mm thick bulk Nb substrate and a bulk 7\sim7 mm thick Cu outer shell with three Cu attachment tabs. The cavity was tested up to a peak surface magnetic field of 53 mT in liquid He at 4.3 K. A horizontal test cryostat was designed and built to test the cavity cooled with three Gifford-McMahon cryocoolers. The rf tests of the conduction-cooled cavity, performed at General Atomics, achieved a peak surface magnetic field of 50 mT and stable operation was possible with up to 18.5 W of rf heat load. The peak frequency shift due to microphonics was 23 Hz. These results represent the highest peak surface magnetic field achieved in a conduction-cooled SRF cavity to date and meet the requirements for a 1 MeV energy gain

    Structured Operational Semantics for Graph Rewriting

    Full text link
    Process calculi and graph transformation systems provide models of reactive systems with labelled transition semantics. While the semantics for process calculi is compositional, this is not the case for graph transformation systems, in general. Hence, the goal of this article is to obtain a compositional semantics for graph transformation system in analogy to the structural operational semantics (SOS) for Milner's Calculus of Communicating Systems (CCS). The paper introduces an SOS style axiomatization of the standard labelled transition semantics for graph transformation systems. The first result is its equivalence with the so-called Borrowed Context technique. Unfortunately, the axiomatization is not compositional in the expected manner as no rule captures "internal" communication of sub-systems. The main result states that such a rule is derivable if the given graph transformation system enjoys a certain property, which we call "complementarity of actions". Archetypal examples of such systems are interaction nets. We also discuss problems that arise if "complementarity of actions" is violated.Comment: In Proceedings ICE 2011, arXiv:1108.014

    Widespread Presence of Human BOULE Homologs among Animals and Conservation of Their Ancient Reproductive Function

    Get PDF
    Sex-specific traits that lead to the production of dimorphic gametes, sperm in males and eggs in females, are fundamental for sexual reproduction and accordingly widespread among animals. Yet the sex-biased genes that underlie these sex-specific traits are under strong selective pressure, and as a result of adaptive evolution they often become divergent. Indeed out of hundreds of male or female fertility genes identified in diverse organisms, only a very small number of them are implicated specifically in reproduction in more than one lineage. Few genes have exhibited a sex-biased, reproductive-specific requirement beyond a given phylum, raising the question of whether any sex-specific gametogenesis factors could be conserved and whether gametogenesis might have evolved multiple times. Here we describe a metazoan origin of a conserved human reproductive protein, BOULE, and its prevalence from primitive basal metazoans to chordates. We found that BOULE homologs are present in the genomes of representative species of each of the major lineages of metazoans and exhibit reproductive-specific expression in all species examined, with a preponderance of male-biased expression. Examination of Boule evolution within insect and mammalian lineages revealed little evidence for accelerated evolution, unlike most reproductive genes. Instead, purifying selection was the major force behind Boule evolution. Furthermore, loss of function of mammalian Boule resulted in male-specific infertility and a global arrest of sperm development remarkably similar to the phenotype in an insect boule mutation. This work demonstrates the conservation of a reproductive protein throughout eumetazoa, its predominant testis-biased expression in diverse bilaterian species, and conservation of a male gametogenic requirement in mice. This shows an ancient gametogenesis requirement for Boule among Bilateria and supports a model of a common origin of spermatogenesis
    corecore