156 research outputs found
Intrinsic switching field distribution of arrays of Ni80Fe20 nanowires probed by magnetic force microscopy
The progress of magnetization reversal of weakly packed ferromagnetic
Ni80Fe20 nanowire arrays of different diameters (40, 50, 70 and 100 nm)
electrodeposited in polycarbonate membranes was studied by magnetic force
microscopy (MFM). For such a low packing density of nanomagnets, the dipolar
interactions between neighbouring wires can be neglected. The intrinsic
switching field distribution has been extracted from in situ MFM images and its
width was found to be considerably smaller than for densely packed nanowire
arrays.Comment: 4 pages, 5 figures. To appear in Journal of Superconductivity and
Novel Magnetis
Magnetic force microscopy investigation of arrays of nickel nanowires and nanotubes
The magnetic properties of arrays of nanowires (NWs) and nanotubes (NTs), 150
nm in diameter, electrodeposited inside nanoporous polycarbonate membranes are
investigated. The comparison of the nanoscopic magnetic force microscopy (MFM)
imaging and the macroscopic behavior as measured by alternating gradient force
magnetometry (AGFM) is made. It is shown that MFM is a complementary technique
that provides an understanding of the magnetization reversal characteristics at
the microscopic scale of individual nanostructures. The local hysteresis loops
have been extracted by MFM measurements. The influence of the shape of such
elongated nanostructures on the dipolar coupling and consequently on the
squareness of the hysteresis curves is demonstrated. It is shown that the
nanowires exhibit stronger magnetic interactions than nanotubes. The
non-uniformity of the magnetization states is also revealed by combining the
MFM and AGFM measurements.Comment: 7 pages, 5 figure
Effects of nonzero photon momentum in (\gamma,2e) processes
We study the effects of nonzero photon momentum on the triply-differential
cross section for (\gamma,2e) processes. Due to the low value of the photon
momentum, these effects are weak and manifest only in special kinematical
conditions like the back-to-back emission of the electrons with equal energy
sharing. Helium and a few light helium-like ions are treated in detail. Quite
unexpectedly, the magnitude of these effects is maximal for relatively small
photon energies. However, although this effect on the TDCS remains rather
small, of the order of a few mbarn eV^{-1} sr^{-2}, it is sufficient to be
observed experimentally.Comment: 8 pages, 7 figures, 1 tabl
Free and smooth boundaries in 2-D finite-difference schemes for transient elastic waves
A method is proposed for accurately describing arbitrary-shaped free
boundaries in single-grid finite-difference schemes for elastodynamics, in a
time-domain velocity-stress framework. The basic idea is as follows: fictitious
values of the solution are built in vacuum, and injected into the numerical
integration scheme near boundaries. The most original feature of this method is
the way in which these fictitious values are calculated. They are based on
boundary conditions and compatibility conditions satisfied by the successive
spatial derivatives of the solution, up to a given order that depends on the
spatial accuracy of the integration scheme adopted. Since the work is mostly
done during the preprocessing step, the extra computational cost is negligible.
Stress-free conditions can be designed at any arbitrary order without any
numerical instability, as numerically checked. Using 10 grid nodes per minimal
S-wavelength with a propagation distance of 50 wavelengths yields highly
accurate results. With 5 grid nodes per minimal S-wavelength, the solution is
less accurate but still acceptable. A subcell resolution of the boundary inside
the Cartesian meshing is obtained, and the spurious diffractions induced by
staircase descriptions of boundaries are avoided. Contrary to what occurs with
the vacuum method, the quality of the numerical solution obtained with this
method is almost independent of the angle between the free boundary and the
Cartesian meshing.Comment: accepted and to be published in Geophys. J. In
Static field limit of excitation probabilities in laser-atom interactions
We consider the interaction of atomic hydrogen, in its ground state, with an electromagnetic pulse whose duration is fixed in terms of the number of optical cycles. We study the probability of excitation of the atom in the static field limit i.e. for field frequencies going to zero. Despite the fact that the well-known Born–Fock adiabatic theorem is valid only for a system whose energy spectrum is discrete, we show that it is still possible to use this theorem to derive, in the low frequency limit, an analytical formula which gives the probability of transition to any excited state of the atom as a function of the field intensity, the carrier envelope phase and the number of optical cycles within the pulse. The results for the probability of excitation to lowlying excited states, obtained with this formula, agree with those we get by solving the timedependent Schrödinger equation. The domain of validity is discussed in detail
Current-voltage characteristics of quasi-one-dimensional superconductors: An S-curve in the constant voltage regime
Applying a constant voltage to superconducting nanowires we find that its
IV-characteristic exhibits an unusual S-behavior. This behavior is the direct
consequence of the dynamics of the superconducting condensate and of the
existence of two different critical currents: j_{c2} at which the pure
superconducting state becomes unstable and j_{c1}<j_{c2} at which the phase
slip state is realized in the system.Comment: 4 pages, 5 figures, replaced with minor change
Magnetic force microscopy study of the switching field distribution of low density arrays of single domain magnetic nanowires
In the present work, we report on the in situ magnetic force microscopy (MFM)
study of the magnetization reversal in two-dimensional arrays of ferromagnetic
Ni80Fe20 and Co55Fe45 nanowires(NW) with different diameters (40, 50, 70 and
100 nm) deposited inside low porosity (P<1%) nanoporous polycarbonate
membranes. In such arrays, the nanowires are sufficiently isolated from each
other so that long range dipolar interactions can be neglected. The MFM
experiments performed for different magnetization states at the same spot of
the samples are analysed to determine the switching field distribution (SFD).
The magnetization curves obtained from the MFM images are relatively square
shaped. The SFD widths are narrower compared to those obtained for high density
arrays. The weak broadening of the curves may be ascribed to the NW intrinsic
SFD. The influence of diameter and composition of the ferromagnetic NW is also
investigated.Comment: 6 pages, 4 figures, To appear in Journal of Applied Physic
Decay versus survival of a localized state subjected to harmonic forcing: exact results
We investigate the survival probability of a localized 1-d quantum particle
subjected to a time dependent potential of the form with
or . The particle is
initially in a bound state produced by the binding potential . We
prove that this probability goes to zero as for almost all values
of , , and . The decay is initially exponential followed by a
law if is not close to resonances and is small; otherwise
the exponential disappears and Fermi's golden rule fails. For exceptional sets
of parameters and the survival probability never decays to zero,
corresponding to the Floquet operator having a bound state. We show similar
behavior even in the absence of a binding potential: permitting a free particle
to be trapped by harmonically oscillating delta function potential
Intense field stabilization in circular polarization: 3D time-dependent dynamics
We investigate the stabilization of a hydrogen atom in circularly polarized
laser fields. We use a time-dependent, fully three dimensional approach to
study the quantum dynamics of the hydrogen atom subject to high intensity,
short wavelength laser pulses. We find enhanced survival probability as the
field is increased under fixed envelope conditions. We also confirm wavepacket
dynamics seen in prior time-dependent computations restricted to two
dimensions.Comment: 4 pages, 3 figures, submitte
- …